K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2019

Khoảng vân: i = λD/a

Nếu tăng khoảng cách giữa hai khe S1, S2 thì a tăng, i giảm. Do đó số vân trên màn giao thoa tăng.

Chọn đáp án B

19 tháng 3 2021

B

 

16 tháng 4 2019

Đáp án C

13 tháng 10 2017

Đáp án B

1 tháng 2 2016

\(i = \frac{\lambda D}{a}=\frac{0,5.2}{0,5}= 2mm.\)

Số vân sáng trên màn quan sát là 

\(N_s= 2.[\frac{L}{2i}]+1 =2.6+1 = 13.\)

3 tháng 5 2016

Khi các vân sáng trùng nhau:   \(k_1\lambda_1=k_2\lambda_2=k_3\lambda_3\)

                                                  k10,4 = k20,5 = k30,6 \(\Leftrightarrow\) 4k1 = 5k2 = 6k3 

BSCNN(4,5,6) = 60

\(\Rightarrow\) k1 = 15 ; k2 = 12 ; k3 = 10 Bậc 15 của \(\lambda_1\) trùng bậc 12 của \(\lambda_2\) trùng với bậc 10 của \(\lambda_3\)

Trong khoảng giữa phải có:  Tổng số VS tính toán = 14 + 11 + 9 = 34

Ta xẽ lập tỉ số cho tới khi   k1 = 15 ; k2 = 12 ; k3 = 10

  - Với cặp \(\lambda_1;\lambda_2:\) \(\frac{k_1}{k_2}=\frac{\lambda_1}{\lambda_2}=\frac{5}{4}=\frac{10}{8}=\frac{15}{12}\)     

      Như vậy:  Trên đoạn từ vân VSTT đến  k1 = 15 ; k2 = 12  thì có tất cả 4 vị trí trùng nhau

Vị trí 1: VSTT  

Vị trí 2:  k1 = 5 ; k2 = 4

Vị trí 3:  k1 = 10 ; k2 = 8                    => Trong khoảng giữa có 2 vị trí trùng nhau.

Vị trí 4:  k1 = 15 ; k2 = 12

  - Với cặp\(\lambda_2;\lambda_3:\)  \(\frac{k_2}{k_3}=\frac{\lambda_3}{\lambda_2}=\frac{6}{5}=\frac{12}{10}\)     

      Như vậy:  Trên đoạn từ vân VSTT đến  k2 = 12 ; k3 = 10  thì có tất cả 3 vị trí trùng nhau

Vị trí 1: VSTT  

Vị trí 2:  k2 = 6 ; k3 = 5                     \(\Rightarrow\) Trong khoảng giữa có 1 vị trí trùng nhau.

Vị trí 3:  k2 = 12 ; k3 = 10

- Với cặp \(\lambda_1;\lambda_3:\)    \(\frac{k_1}{k_3}=\frac{\lambda_3}{\lambda_1}=\frac{3}{2}=\frac{6}{4}=\frac{9}{6}=\frac{12}{8}=\frac{15}{10}\)     

      Như vậy:  Trên đoạn từ vân VSTT đến  k1 = 15 ; k3 = 10  thì có tất cả 6 vị trí trùng nhau

Vị trí 1: VSTT 

Vị trí 2:  k1 = 3   ;  k3 = 2

Vị trí 3:  k1 = 6   ;  k3 = 4

Vị trí 4:  k1 = 9   ;  k3 = 6                                     \(\Rightarrow\) Trong khoảng giữa có 4 vị trí trùng nhau.

Vị trí 5:  k1 = 12 ;  k3 = 8

Vị trí 6:  k1 = 15 ;  k3 = 10

Vậy tất cả có 2 + 1 +4 = 7 vị trí trùng nhau của các bức xạ.

Số VS quan sát được = Tổng số VS tính toán – Số vị trí trùng nhau       = 34 – 7 = 27 vân sáng.  

\(\rightarrow D\)   

3 tháng 5 2016

ok

23 tháng 6 2018

Từ (1); (2); (3) ta được tỷ lệ trên

Số vân sáng đơn sắc cần tìm là

=16

26 tháng 1 2016

Theo đề bài: Với bức xạ λ1 thì 10i1 = MN = 20mm → i1 = 2mm.

\(\frac{\iota_1}{\iota_2}=\frac{\text{λ}_1}{\text{λ}_2}=\frac{3}{5}\)\(\rightarrow\iota_2=\frac{10}{3}mm\rightarrow N_2=2.\left[\frac{MN}{2\iota_2}\right]+1=7\)

 

8 tháng 2 2019

Chọn đáp án D

23 tháng 4 2019