K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2019

Chọn A.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

(h.2.63) Độ dài đường sinh l bằng độ dài cạnh BC của tam giác vuông ABC.

Theo định lý Py-ta-go, ta có:

BC 2 = AB 2 + AC 2 = a 2 + 3 a 2 = 4 a 2

⇒ BC = 2a.

Vậy độ dài đường sinh của hình nón là l = 2a.

14 tháng 4 2017

12 tháng 5 2019

2 tháng 4 2016

A B H C C' A' B'

Gọi H là trung điểm của cạnh BC. Suy ra :

\(\begin{cases}A'H\perp\left(ABC\right)\\AH=\frac{1}{2}BC=\frac{1}{2}\sqrt{a^2+3a^2}=a\end{cases}\)

Do đó : \(A'H^2=A'A^2-AH^2=3a^2=3a^2\Rightarrow A'H=a\sqrt{3}\)

Vậ \(V_{A'ABC}=\frac{1}{3}A'H.S_{\Delta ABC}=\frac{a^2}{2}\)

Trong tam giác vuông A'B'H ta có :

\(HB'=\sqrt{A'B'^2+A'H^2}=2a\) nên tam giác B'BH cân tại B'

Đặt \(\varphi\) là góc giữa 2 đường thẳng AA' và B'C' thì \(\varphi=\widehat{B'BH}\)

Vậy \(\cos\varphi=\frac{a}{2.2a}=\frac{1}{4}\)

22 tháng 9 2016

tại sao tam giác A'B'H lại vuông tại A' ạ??

30 tháng 12 2018

Đáp án A

30 tháng 11 2018

Chọn C.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

(h.13) Gọi S là đỉnh hình nón, O là tâm đáy, A là một điểm thuộc đường tròn đáy.

Theo giả thiết, đường tròn đáy có bán kính R = OA = a 3 và ∠ = 60 °

Trong tam giác SOA vuông tại O, ta có: OA = SO.tan60 °  ⇒ SO = a.

Do đó chiều cao của hình nón là h = a.

Vậy thể tích hình nón là: V =  π a 3

12 tháng 4 2019

7 tháng 4 2016

A E M B C H N S

Xét tam giác ABC có : \(BC=AB.\tan60^0=2a\sqrt{3}\Rightarrow S_{\Delta ABC}=2a^2\sqrt{3}\)

\(V_{S.ABCD}=\frac{1}{3}SA.S_{\Delta ABC}=\frac{1}{3}a\sqrt{3}.2a^2\sqrt{3}=2a^3\)

- Gọi N là trung điểm cạnh SA. Do SB//(CMN) nên d(SB. CM)=d(SB,(CMN))

                                                                                                 =d(B,(CMN))

                                                                                                 =d(A,(CMN))

- Kẻ \(AE\perp MC,E\in MC\) và kẻ \(AH\perp NE,H\in NE\), ta chứng minh được \(AH\perp\left(CMN\right)\Rightarrow d\left(A,\left(CMN\right)\right)=AH\)

Tính \(AE=\frac{2S_{\Delta AMC}}{MC}\) trong đó :

                              \(S_{\Delta AMC}=\frac{1}{2}AM.AC.\sin\widehat{CAM}=\frac{1}{2}a.4a\frac{\sqrt{3}}{2}=a^2\sqrt{3};MC=a\sqrt{13}\)

                             \(\Rightarrow AE=\frac{2a\sqrt{3}}{\sqrt{13}}\)

Tính được \(AH=\frac{2a\sqrt{3}}{\sqrt{29}}\Rightarrow d\left(A,\left(CMN\right)\right)=\frac{2a\sqrt{3}}{\sqrt{29}}\Rightarrow d\left(SB,CM\right)=\frac{2a\sqrt{3}}{\sqrt{29}}\)

10 tháng 7 2017

Chọn A.

(h.2.59) Trong tam giác ABC vuông tại A, ta có:

AC = BC.sin30 °  = a;

AB = BC.cos30 °  = a 3 .

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Diện tích toàn phần hình nón là:

S 1 = S xq + S đáy = πRl + πR 2 = πa . 2 a + πa 2 = 3 πa 2

Diện mặt cầu đường kính AB là:

S 2 = πAB 2 = π a 3 2 = 3 πa 2

Từ đó suy ra, tỉ số  S 1 / S 2  = 1