K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2021

Em học lớp 6 em ko câu trả lời sorry chị

21 tháng 9 2021

dạ anh nhờ bn anh hay ai tl thay nha

DD
12 tháng 7 2021

Xét tam giác \(PBC\)và tam giác \(PAB\)có: 

\(\frac{PB}{PA}=\frac{BC}{AB}=\frac{PC}{PB}=\sqrt{2}\)

suy ra \(\Delta PBC~\Delta PAB\left(c.c.c\right)\)

suy ra \(\widehat{PBC}=\widehat{PAB}\).

\(\widehat{APB}=180^o-\widehat{PAB}-\widehat{PBA}=180^o-\widehat{PBC}-\widehat{PBA}=180^o-\widehat{ABC}\)

\(=180^o-45^o-135^o\)

12 tháng 5 2019

AH
Akai Haruma
Giáo viên
11 tháng 7 2017

Lời giải:

Thiết diện là một tam giác đều cạnh \(a\sqrt{3}\) nên \(2R=\sqrt{3}a\Rightarrow R=\frac{\sqrt{3}a}{2}\)

Do đó diện tích xq của hình nón là:

\(S_{xq}=\pi Rl=\frac{3a^2}{2}\pi\)

Đáp án C

7 tháng 10 2017

Đáp án A

 

1 tháng 4 2017

a) Hoành độ điểm P là :

xp = OP = OM. cos α = R.cosα

Phương trình đường thẳng OM là y = tanα.x. Thể tích V của khối tròn xoay là:

b) Đặt t = cosα => t ∈ . (vì α ∈ ), α = arccos t.

Ta có :

V' = 0 ⇔

hoặc (loại).

Từ đó suy ra V(t) lớn nhất ⇔ , khi đó : .

4 tháng 5 2018

Đáp án A

Câu 1 : Tính thể tích V của khối chóp S.ABC biết tam giác ABC vuông tại B , \(SA\perp\left(ABC\right)\) và SA = AB = a , BC = 2a A. V = \(a^3\) B. V = 2a3 C. V = \(\frac{1}{3}a^3\) D. V = \(\frac{2}{3}a^3\) Câu 2 : Tính thể tích V của khối chóp tam giác đều S.ABC biết cạnh đáy bằng a , cạnh bên \(SA\perp\left(ABC\right)\) và SA = \(2a\sqrt{3}\) A. V = \(\frac{1}{2}a^3\) B. V = \(\frac{3}{2}a^3\) ...
Đọc tiếp

Câu 1 : Tính thể tích V của khối chóp S.ABC biết tam giác ABC vuông tại B , \(SA\perp\left(ABC\right)\) và SA = AB = a , BC = 2a

A. V = \(a^3\) B. V = 2a3 C. V = \(\frac{1}{3}a^3\) D. V = \(\frac{2}{3}a^3\)

Câu 2 : Tính thể tích V của khối chóp tam giác đều S.ABC biết cạnh đáy bằng a , cạnh bên \(SA\perp\left(ABC\right)\) và SA = \(2a\sqrt{3}\)

A. V = \(\frac{1}{2}a^3\) B. V = \(\frac{3}{2}a^3\) C. V = \(\frac{1}{3}a^3\) D. V = \(\frac{2}{3}a^3\)

Câu 3 : Tính thể tích V của khối chóp S.ABCD có đáy ABCD là hình vuông , BD = 2a , cạnh bên \(SA\perp\left(ABC\right)\) và SA = SC

A. V = 4a3 B. V = \(\frac{1}{3}a^3\sqrt{2}\) C. V = \(a^3\sqrt{2}\) D. V = \(\frac{4}{3}a^3\)

Câu 4 : Tính thể tích V của khối chóp S.ABCD là hình chữ nhật , AB = a , AD = \(a\sqrt{3}\) , \(SA\perp\left(ABC\right)\) và SC tạo với mặt phẳng đáy một góc 600

A. V = \(\frac{2}{3}a^3\) B. V = \(\frac{1}{3}a^3\sqrt{2}\) C. V = 6a3 D. V = 2a3

1
NV
4 tháng 8 2020

1.

\(V=\frac{1}{3}SA.\frac{1}{2}AB.BC=\frac{1}{6}.a.a.2a=\frac{a^3}{3}\)

2.

\(V=\frac{1}{3}SA.S_{ABC}=\frac{1}{3}.2a\sqrt{3}.\frac{a^2\sqrt{3}}{4}=\frac{a^3}{2}\)

P/s: chóp này là chóp "có đáy là tam giác đều" chứ không phải "chóp tam giác đều"

Hai loại này khác xa nhau đấy, ko lộn xộn nhầm lẫn được đâu

3.

Câu này đề sai

\(SA\perp\left(ABCD\right)\Rightarrow SA\perp AC\Rightarrow\Delta SAC\) vuông tại A

\(\Rightarrow SC>SA\) (cạnh huyền luôn lớn hơn cạnh góc vuông)

Do đó đề cho \(SA=SC\) là vô lý

4.

\(AC=BD=\sqrt{AB^2+AD^2}=2a\)

\(\widehat{SCA}=60^0\Rightarrow SA=SC.tan60^0=2a\sqrt{3}\)

\(V=\frac{1}{3}SA.AB.AD=\frac{1}{3}.2a\sqrt{3}.a.a\sqrt{3}=2a^3\)

1 trong ko gian oxyz, cho 2 điểm A(1;-2;-3) và B(3;0;1). Phương trình mặt cầu đường kính AB là 2 Trong ko gian oxyz, cho ba điểm A (1;2;1) B(3;1;0),C (3;-1;2) .Phương ttrinh chính tắc của đường thẳng vuông góc với mặt phẳng (ABC) tại A là 3 trong ko gian oxyz, vecto nào sau đây là véc tơ pháp tuyến của mp đi qua ba điểm A(2;-1;4) B(1;0;1),C(4;1;6) A \(\overline{n}\left(1;1;2\right)\) \(\overline{n}\left(1;1;2\right)\) B...
Đọc tiếp

1 trong ko gian oxyz, cho 2 điểm A(1;-2;-3) và B(3;0;1). Phương trình mặt cầu đường kính AB là

2 Trong ko gian oxyz, cho ba điểm A (1;2;1) B(3;1;0),C (3;-1;2) .Phương ttrinh chính tắc của đường thẳng vuông góc với mặt phẳng (ABC) tại A là

3 trong ko gian oxyz, vecto nào sau đây là véc tơ pháp tuyến của mp đi qua ba điểm A(2;-1;4) B(1;0;1),C(4;1;6)

A \(\overline{n}\left(1;1;2\right)\) \(\overline{n}\left(1;1;2\right)\) B \(\overline{N}\left(-2;1;1\right)\) C \(\overline{N}\left(1;1;-1\right)\) D \(\overline{N}\left(-1;1;1\right)\)

4 cho khối nón có độ dài đường sinh bằng 2a và bán kính đáy bằng a.Thể tích của khối nón đã cho bằng bao nhiêu

5 cho hình nón tròn xoay có độ dài đường sinh là 2a, góc ở đỉnh của hình nón bằng \(60^0\) .tHỂ tích V của khối nón đã cho là

6 trong ko gian, cho tam giác vuông ABC vuông tại A , AB =a ,AC =\(a\sqrt{3}\) . Tính độ dài đường sinh l của hình nón, nhận dc khi qay tam giác ABC xung quanh trục AB

7 trong ko gian cho tam giác ABC vuông tại A, AB=a, \(\widehat{ACB}=30^0\) . Tính thể tích V của khối nón nhận dc khi quay quanh tam giác ABC quanh cạnh AC

8 Cho tứ diện đều ABCD có cạnh bằng 3a. Hình nón (N) có đỉnh A có đáy là đường tròn ngoại tiếp tam giác BCD .tính diện tích xung quanh Sxq của (N)

9 cho hình nón đỉnh S có đáy là hình tròn O, thiết diện qua trục là tam giác đều cạnh a. Thể tích của khối nón bằng

10 cắt mộ hình nón bằng một mặt phảng đi qua trục của nó ta dc thiết diện là một tam giác vuông can có cạnh huyền bằng a.Diện tích xung quanh hình nón theo a là

4
NV
16 tháng 6 2020

9.

\(R=\frac{AB}{2}=\frac{a}{2}\) ; \(l=AB=a\)

\(h=\sqrt{l^2-R^2}=\frac{a\sqrt{3}}{2}\)

Thể tích chóp:

\(V=\frac{1}{3}\pi R^2h=\frac{\sqrt{3}}{6}\pi a^3\)

10.

Gọi thiết diện là tam giác ABC vuông cân tại A

\(BC=a\Rightarrow R=\frac{BC}{2}=\frac{a}{2}\)

\(l=AB=\frac{BC}{\sqrt{2}}=\frac{a\sqrt{2}}{2}\)

\(S_{xq}=\pi Rl=\frac{\sqrt{2}}{4}\pi a^2\)

NV
16 tháng 6 2020

6.

\(l=BC=\sqrt{AB^2+AC^2}=2a\)

7.

\(h=AC=\frac{AB}{tan30^0}=a\sqrt{3}\) ; \(R=AB=a\)

\(V=\frac{1}{3}\pi R^2h=\frac{\sqrt{3}}{3}\pi a^3\)

8.

Gọi O là tâm đáy

\(\Rightarrow R=OB=\frac{2}{3}.\frac{BC\sqrt{3}}{2}=\frac{BC\sqrt{3}}{3}=a\sqrt{3}\)

\(l=AB=3a\)

\(S_{xq}=\pi Rl=3\sqrt{3}\pi a^2\)