K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2021

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{2}=\frac{y}{4}=\frac{x^4+y^4}{16+256}=\frac{16}{272}=\frac{1}{17}\)

\(\Rightarrow x=\frac{2}{17};y=\frac{4}{17}\)

25 tháng 8 2017

\(x^4.y^4=\left(x.y\right)^4=16\Leftrightarrow x.y=2\)

Đặt \(\dfrac{x}{2}=\dfrac{y}{4}=k\)

\(\Rightarrow\dfrac{x}{2}=k\Leftrightarrow x=2k\)

\(\Rightarrow\dfrac{y}{4}=k\Leftrightarrow y=4k\)

\(x.y=2\), ta có :

\(2k.4k=2\)

\(\Leftrightarrow8k^2=2\Leftrightarrow k^2=\dfrac{1}{4}\Leftrightarrow\left[{}\begin{matrix}k=\dfrac{1}{2}\\k=-\dfrac{1}{2}\end{matrix}\right.\)

+) TH1: Khi \(k=\dfrac{1}{2}\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

+ ) TH2 : Khi \(k=-\dfrac{1}{2}\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)

Vậy ......

25 tháng 8 2017

\(x^4\times y^4=16\)

\(\Rightarrow\left(xy\right)^4=16\)

\(\Rightarrow xy=-2;2\)

Xét \(x,y=-2\)

\(\dfrac{x}{2}=\dfrac{y}{4}\Rightarrow\dfrac{x^2}{4}=\dfrac{xy}{8}=-1\)

\(\Rightarrow x^2=-1\) (loại)

\(\Rightarrow xy=2\)

\(\Rightarrow x^2=1\)

\(\Rightarrow x=-1;1\)

\(x=-1;y=-2\)

\(x=1;y=2\)

Vậy \(\left(x,y\right)=\left(-1,-2\right);\left(1,2\right)\)

AH
Akai Haruma
Giáo viên
15 tháng 7 2018

Lời giải:

Đặt \(\frac{x}{3}=\frac{y}{4}=t\Rightarrow x=3t; y=4t\)

Thay vào điều kiện \(x^2-y^2=16\) ta suy ra:

\((3t)^2-(4t)^2=16\Leftrightarrow 9t^2-16t^2=16\)

\(\Leftrightarrow -7t^2=16\) (vô lý do \(-7t^2\le 0\) với mọi $t$)

Do đó không tồn tại $t$, kéo theo không tồn tại $x,y$ thỏa mãn.

7 tháng 7 2017

Ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}\Leftrightarrow\left(\dfrac{x}{2}\right)^2=\left(\dfrac{y}{3}\right)^2\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{x^2-y^2}{4-9}=\dfrac{-16}{-5}=3,2\)

Do đó:

x2 = \(4.3,2=12,8\Rightarrow x=\sqrt{12,8}\)

y2 = \(9.3,2=28,8\Rightarrow y=\sqrt{28,8}\)

Suy ra: \(\dfrac{\sqrt{28,8}}{4}=\dfrac{z}{5}\Rightarrow z=\dfrac{5.\sqrt{28,8}}{4}=3\sqrt{5}\)

Vậy \(x=\sqrt{12,8};y=\sqrt{28,8};z=3\sqrt{5}\)

25 tháng 12 2018

Thay số vào đi bạn

12 tháng 12 2022

x/2=y/3 nên x/8=y/12

y/4=z/5 nen y/12=z/15

=>x/8=y/12=z/15=k

=>x=8k; y=12k; z=15k

x^2-y^2=-16

=>64k^2-144k^2=-16

=>80k^2=16

=>k^2=1/5

TH1: \(k=\dfrac{1}{\sqrt{5}}\)

=>\(x=\dfrac{8\sqrt{5}}{5};y=\dfrac{12\sqrt{5}}{5};z=3\sqrt{5}\)

TH2: \(k=-\dfrac{1}{\sqrt{5}}\)

=>\(x=-\dfrac{8\sqrt{5}}{5};y=-\dfrac{12\sqrt{5}}{5};z=-3\sqrt{5}\)

Câu 1:

Ta có: \(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)

\(\Leftrightarrow\left(x-1\right)^x\cdot\left(x-1\right)^2=\left(x-1\right)^x\cdot\left(x-1\right)^4\)

\(\Leftrightarrow\left(x-1\right)^2=\left(x-1\right)^4\)

\(\Leftrightarrow\left(x-1\right)^2-\left(x-1\right)^4=0\)

\(\Leftrightarrow\left(x-1\right)^2\cdot\left[1-\left(x-1\right)^2\right]=0\)

\(\Leftrightarrow\left(x-1\right)^2\cdot\left[1-\left(x-1\right)\right]\cdot\left[1+\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)^2\cdot\left(1-x+1\right)\cdot\left(1+x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\cdot\left(2-x\right)\cdot x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\2-x=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x=2\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)

Vậy: x\(\in\){0;1;2}

Câu 2:

Ta có: \(\left(x+2\right)^2\ge0\forall x\)

\(\left(y-3\right)^2\ge0\forall y\)

Do đó: \(\left(x+2\right)^2+2\left(y-3\right)^2\ge0\forall x,y\)

\(\left(x+2\right)^2+2\left(y-3\right)^2< 4\)

và các số chính phương nhỏ hơn 4 là 0 và 1

nên \(\left(x+2\right)^2+2\left(y-3\right)^2\in\left\{0;1;2\right\}\)

*Trường hợp 1: (x+2)2=2(y-3)2=0

\(\Leftrightarrow\left(x+2\right)^2+2\left(y-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=3\end{matrix}\right.\)

*Trường hợp 2: \(\left(x+2\right)^2=0\)\(\left(y-3\right)^2=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\\left[{}\begin{matrix}y-3=1\\y-3=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\\left[{}\begin{matrix}y=4\\y=2\end{matrix}\right.\end{matrix}\right.\)

*Trường hợp 3: \(\left(x+2\right)^2=1\)\(\left(y-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+2=1\\x+2=-1\end{matrix}\right.\\y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\\y=3\end{matrix}\right.\)

Vậy: (x,y)\(\in\){(-2;3);(-2;4);(-2;2);(-1;3);(-3;3)}

AH
Akai Haruma
Giáo viên
27 tháng 3 2020

Câu 1 bạn làm nhầm rồi.

$(x-1)^x(x-1)^2=(x-1)^x(x-1)^4$ không tương đương với $(x-1)^2=(x-1)^4$

Mà từ đây suy ra \(\left[\begin{matrix} (x-1)^x=0\\ (x-1)^2=(x-1)^4\end{matrix}\right.\)

Đối với TH $(x-1)^x=0$ thì có thể xảy ra 2TH: $x-1=0$ hoặc $x=0$

7 tháng 8 2016

Đặt:

\(\frac{x}{2}=\frac{y}{4}=k\)

\(\Rightarrow\frac{x}{2}=k\Rightarrow x=k.2\)

\(\Rightarrow\frac{y}{4}=k\Rightarrow y=k.4\)

Thế vào \(x^4.y^4=16\), ta có;
\(\left(k.2\right).\left(k.4\right)=16\)

\(k^2.8=16\)

\(k^2=2\)

\(k=...\)

Đề sai ko

7 tháng 8 2016

Ta có x,y > 0

x4Xy4=16

=>xXy=2

Mà x/2=y/4

=>Ta có: x=1;y=2

11 tháng 8 2018

\(\frac{x}{2}=\frac{y}{4}=k\)

=>   \(x=2k;\)\(y=4k\)

Theo bài ra ta có:

\(x^4.y^4=16\)

<=>  \(\left(2k\right)^4.\left(4k\right)^4=16\)

<=> \(4096.k^8=16\)

<=> \(k^8=\frac{1}{256}\)

<=>  \(k=\pm\frac{1}{2}\)

làm nốt phần còn lại

11 tháng 8 2018

        x/2=y/4

=>   2y=4x

<=>   y=2x

thay vào , ta có

        x4 .(2x)4 =16

<=> 16x8=16

<=>    x8 =1

=> x= 1 hoặc x=-1

thay vào ta có 2 cặp (x,y) là ( 1,2) và (-1,-2)

13 tháng 2 2019

a, ta co:

x-2/4=-16/2-x

=>(x-2)(2-x)=(-16).4

lai co: x-2/2-x=-1

=>x-2=(-1).(2-x)

13 tháng 2 2019

a, ta co:

x-2/4=-16/2-x

=>(x-2)(2-x)=(-16).4 (1)

lai co: x-2/2-x=-1

=>x-2=(-1).(2-x) (2)

thay(2) vao(1) ,ta co:

(2-x)^2=-64

.........(tu lam tiep nha)

6 tháng 8 2016

\(\Rightarrow\frac{x^8}{256}=\frac{y^8}{65536}=\frac{x^4.y^4}{4096}=\frac{16}{4096}=\frac{1}{256}\)

\(\Rightarrow\left[\begin{array}{nghiempt}x=1\\x=-1\end{array}\right.\)

\(\Rightarrow\left[\begin{array}{nghiempt}y=2\\y=-2\end{array}\right.\)

Mà 2 và 4 cùng dấu

=> x; y cùng dấu

\(\Rightarrow\left(x;y\right)\in\left\{\left(1;2\right);\left(-1;-2\right)\right\}\)

6 tháng 8 2016

=>\(\frac{x}{2}=\frac{y}{4}=>\frac{x^4}{16}=\frac{y^4}{256}=\frac{x^4.y^4}{16.256}=\frac{16}{4096}=\frac{1}{256}\)

=>\(\begin{cases}x=1\\x=-1\end{cases}\)

=>\(\begin{cases}y=2\\y=-2\end{cases}\)

vậy:

\(x=1;y=2\)

\(x=-1;y=-2\)

7 tháng 1 2018

1.

\(\left(\dfrac{-2}{3}\right).0,75+1\dfrac{2}{3}:\left(\dfrac{-4}{9}\right)+\left(\dfrac{-1}{2}\right)^2\)

\(=\left(\dfrac{-2}{3}\right).\dfrac{3}{4}+\dfrac{5}{3}.\left(\dfrac{9}{-4}\right)+\dfrac{1}{4}\)

\(=-\dfrac{1}{2}+\dfrac{45}{-12}+\dfrac{1}{4}\)

\(=-\dfrac{6}{12}+\dfrac{-45}{12}+\dfrac{3}{4}\)

\(=\dfrac{-48}{12}\)

\(=-4\)

2.

a) \(\dfrac{3}{4}-\left(x+\dfrac{1}{2}\right)=\dfrac{4}{5}\)

\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{3}{4}-\dfrac{4}{5}\)

\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{-1}{20}\)

\(\Leftrightarrow x=\dfrac{-1}{20}-\dfrac{1}{2}\)

\(\Leftrightarrow x=\dfrac{-1}{20}-\dfrac{10}{20}\)

\(\Leftrightarrow x=\dfrac{-11}{20}\)

b) \(\left|x-\dfrac{2}{5}\right|+\dfrac{3}{4}=\dfrac{11}{4}\)

\(\Leftrightarrow\left|x-\dfrac{2}{5}\right|=\dfrac{11}{4}-\dfrac{3}{4}\)

\(\Leftrightarrow\left|x-\dfrac{2}{5}\right|=2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{2}{5}=-2\Rightarrow x=-2+\dfrac{2}{5}=\dfrac{-8}{5}\\x-\dfrac{2}{5}=2\Rightarrow x=2+\dfrac{2}{5}=\dfrac{12}{5}\end{matrix}\right.\)

3.

a) \(\dfrac{16}{2^n}=2\)

\(\Leftrightarrow2^n=16:2\)

\(\Leftrightarrow2^n=8\)

\(\Leftrightarrow2^n=2^3\)

\(\Leftrightarrow n=3\)

b) \(\dfrac{\left(-3\right)^n}{81}=-27\)

\(\Leftrightarrow\left(-3\right)^n=\left(-27\right).81\)

\(\Leftrightarrow\left(-3\right)^n=\left(-3\right)^3.\left(-3\right)^4\)

\(\Leftrightarrow\left(-3\right)^n=\left(-3\right)^7\)

\(\Leftrightarrow n=7\)

4. Ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}\) (1)

\(\dfrac{y}{5}=\dfrac{z}{4}\Rightarrow\dfrac{y}{15}=\dfrac{z}{12}\) (2)

Từ (1) và (2) suy ra \(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}\)

\(x-y+x=-49\) ta có:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-49}{7}=-7\)

Vậy \(\left\{{}\begin{matrix}x=\left(-7\right).10=-70\\y=\left(-7\right).15=-105\\z=\left(-7\right).12=-84\end{matrix}\right.\)