Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4.y^4=\left(x.y\right)^4=16\Leftrightarrow x.y=2\)
Đặt \(\dfrac{x}{2}=\dfrac{y}{4}=k\)
\(\Rightarrow\dfrac{x}{2}=k\Leftrightarrow x=2k\)
\(\Rightarrow\dfrac{y}{4}=k\Leftrightarrow y=4k\)
Mà \(x.y=2\), ta có :
\(2k.4k=2\)
\(\Leftrightarrow8k^2=2\Leftrightarrow k^2=\dfrac{1}{4}\Leftrightarrow\left[{}\begin{matrix}k=\dfrac{1}{2}\\k=-\dfrac{1}{2}\end{matrix}\right.\)
+) TH1: Khi \(k=\dfrac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
+ ) TH2 : Khi \(k=-\dfrac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)
Vậy ......
\(x^4\times y^4=16\)
\(\Rightarrow\left(xy\right)^4=16\)
\(\Rightarrow xy=-2;2\)
Xét \(x,y=-2\)
\(\dfrac{x}{2}=\dfrac{y}{4}\Rightarrow\dfrac{x^2}{4}=\dfrac{xy}{8}=-1\)
\(\Rightarrow x^2=-1\) (loại)
\(\Rightarrow xy=2\)
\(\Rightarrow x^2=1\)
\(\Rightarrow x=-1;1\)
\(x=-1;y=-2\)
\(x=1;y=2\)
Vậy \(\left(x,y\right)=\left(-1,-2\right);\left(1,2\right)\)
Lời giải:
Đặt \(\frac{x}{3}=\frac{y}{4}=t\Rightarrow x=3t; y=4t\)
Thay vào điều kiện \(x^2-y^2=16\) ta suy ra:
\((3t)^2-(4t)^2=16\Leftrightarrow 9t^2-16t^2=16\)
\(\Leftrightarrow -7t^2=16\) (vô lý do \(-7t^2\le 0\) với mọi $t$)
Do đó không tồn tại $t$, kéo theo không tồn tại $x,y$ thỏa mãn.
Ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}\Leftrightarrow\left(\dfrac{x}{2}\right)^2=\left(\dfrac{y}{3}\right)^2\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{x^2-y^2}{4-9}=\dfrac{-16}{-5}=3,2\)
Do đó:
x2 = \(4.3,2=12,8\Rightarrow x=\sqrt{12,8}\)
y2 = \(9.3,2=28,8\Rightarrow y=\sqrt{28,8}\)
Suy ra: \(\dfrac{\sqrt{28,8}}{4}=\dfrac{z}{5}\Rightarrow z=\dfrac{5.\sqrt{28,8}}{4}=3\sqrt{5}\)
Vậy \(x=\sqrt{12,8};y=\sqrt{28,8};z=3\sqrt{5}\)
x/2=y/3 nên x/8=y/12
y/4=z/5 nen y/12=z/15
=>x/8=y/12=z/15=k
=>x=8k; y=12k; z=15k
x^2-y^2=-16
=>64k^2-144k^2=-16
=>80k^2=16
=>k^2=1/5
TH1: \(k=\dfrac{1}{\sqrt{5}}\)
=>\(x=\dfrac{8\sqrt{5}}{5};y=\dfrac{12\sqrt{5}}{5};z=3\sqrt{5}\)
TH2: \(k=-\dfrac{1}{\sqrt{5}}\)
=>\(x=-\dfrac{8\sqrt{5}}{5};y=-\dfrac{12\sqrt{5}}{5};z=-3\sqrt{5}\)
Câu 1:
Ta có: \(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)
\(\Leftrightarrow\left(x-1\right)^x\cdot\left(x-1\right)^2=\left(x-1\right)^x\cdot\left(x-1\right)^4\)
\(\Leftrightarrow\left(x-1\right)^2=\left(x-1\right)^4\)
\(\Leftrightarrow\left(x-1\right)^2-\left(x-1\right)^4=0\)
\(\Leftrightarrow\left(x-1\right)^2\cdot\left[1-\left(x-1\right)^2\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\cdot\left[1-\left(x-1\right)\right]\cdot\left[1+\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\cdot\left(1-x+1\right)\cdot\left(1+x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\cdot\left(2-x\right)\cdot x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\2-x=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x=2\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)
Vậy: x\(\in\){0;1;2}
Câu 2:
Ta có: \(\left(x+2\right)^2\ge0\forall x\)
\(\left(y-3\right)^2\ge0\forall y\)
Do đó: \(\left(x+2\right)^2+2\left(y-3\right)^2\ge0\forall x,y\)
mà \(\left(x+2\right)^2+2\left(y-3\right)^2< 4\)
và các số chính phương nhỏ hơn 4 là 0 và 1
nên \(\left(x+2\right)^2+2\left(y-3\right)^2\in\left\{0;1;2\right\}\)
*Trường hợp 1: (x+2)2=2(y-3)2=0
\(\Leftrightarrow\left(x+2\right)^2+2\left(y-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=3\end{matrix}\right.\)
*Trường hợp 2: \(\left(x+2\right)^2=0\) và \(\left(y-3\right)^2=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\\left[{}\begin{matrix}y-3=1\\y-3=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\\left[{}\begin{matrix}y=4\\y=2\end{matrix}\right.\end{matrix}\right.\)
*Trường hợp 3: \(\left(x+2\right)^2=1\) và \(\left(y-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+2=1\\x+2=-1\end{matrix}\right.\\y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\\y=3\end{matrix}\right.\)
Vậy: (x,y)\(\in\){(-2;3);(-2;4);(-2;2);(-1;3);(-3;3)}
Câu 1 bạn làm nhầm rồi.
$(x-1)^x(x-1)^2=(x-1)^x(x-1)^4$ không tương đương với $(x-1)^2=(x-1)^4$
Mà từ đây suy ra \(\left[\begin{matrix} (x-1)^x=0\\ (x-1)^2=(x-1)^4\end{matrix}\right.\)
Đối với TH $(x-1)^x=0$ thì có thể xảy ra 2TH: $x-1=0$ hoặc $x=0$
Đặt:
\(\frac{x}{2}=\frac{y}{4}=k\)
\(\Rightarrow\frac{x}{2}=k\Rightarrow x=k.2\)
\(\Rightarrow\frac{y}{4}=k\Rightarrow y=k.4\)
Thế vào \(x^4.y^4=16\), ta có;
\(\left(k.2\right).\left(k.4\right)=16\)
\(k^2.8=16\)
\(k^2=2\)
\(k=...\)
Đề sai ko
\(\frac{x}{2}=\frac{y}{4}=k\)
=> \(x=2k;\)\(y=4k\)
Theo bài ra ta có:
\(x^4.y^4=16\)
<=> \(\left(2k\right)^4.\left(4k\right)^4=16\)
<=> \(4096.k^8=16\)
<=> \(k^8=\frac{1}{256}\)
<=> \(k=\pm\frac{1}{2}\)
làm nốt phần còn lại
x/2=y/4
=> 2y=4x
<=> y=2x
thay vào , ta có
x4 .(2x)4 =16
<=> 16x8=16
<=> x8 =1
=> x= 1 hoặc x=-1
thay vào ta có 2 cặp (x,y) là ( 1,2) và (-1,-2)
a, ta co:
x-2/4=-16/2-x
=>(x-2)(2-x)=(-16).4
lai co: x-2/2-x=-1
=>x-2=(-1).(2-x)
a, ta co:
x-2/4=-16/2-x
=>(x-2)(2-x)=(-16).4 (1)
lai co: x-2/2-x=-1
=>x-2=(-1).(2-x) (2)
thay(2) vao(1) ,ta co:
(2-x)^2=-64
.........(tu lam tiep nha)
\(\Rightarrow\frac{x^8}{256}=\frac{y^8}{65536}=\frac{x^4.y^4}{4096}=\frac{16}{4096}=\frac{1}{256}\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=1\\x=-1\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}y=2\\y=-2\end{array}\right.\)
Mà 2 và 4 cùng dấu
=> x; y cùng dấu
\(\Rightarrow\left(x;y\right)\in\left\{\left(1;2\right);\left(-1;-2\right)\right\}\)
=>\(\frac{x}{2}=\frac{y}{4}=>\frac{x^4}{16}=\frac{y^4}{256}=\frac{x^4.y^4}{16.256}=\frac{16}{4096}=\frac{1}{256}\)
=>\(\begin{cases}x=1\\x=-1\end{cases}\)
=>\(\begin{cases}y=2\\y=-2\end{cases}\)
vậy:
\(x=1;y=2\)
\(x=-1;y=-2\)
1.
\(\left(\dfrac{-2}{3}\right).0,75+1\dfrac{2}{3}:\left(\dfrac{-4}{9}\right)+\left(\dfrac{-1}{2}\right)^2\)
\(=\left(\dfrac{-2}{3}\right).\dfrac{3}{4}+\dfrac{5}{3}.\left(\dfrac{9}{-4}\right)+\dfrac{1}{4}\)
\(=-\dfrac{1}{2}+\dfrac{45}{-12}+\dfrac{1}{4}\)
\(=-\dfrac{6}{12}+\dfrac{-45}{12}+\dfrac{3}{4}\)
\(=\dfrac{-48}{12}\)
\(=-4\)
2.
a) \(\dfrac{3}{4}-\left(x+\dfrac{1}{2}\right)=\dfrac{4}{5}\)
\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{3}{4}-\dfrac{4}{5}\)
\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{-1}{20}\)
\(\Leftrightarrow x=\dfrac{-1}{20}-\dfrac{1}{2}\)
\(\Leftrightarrow x=\dfrac{-1}{20}-\dfrac{10}{20}\)
\(\Leftrightarrow x=\dfrac{-11}{20}\)
b) \(\left|x-\dfrac{2}{5}\right|+\dfrac{3}{4}=\dfrac{11}{4}\)
\(\Leftrightarrow\left|x-\dfrac{2}{5}\right|=\dfrac{11}{4}-\dfrac{3}{4}\)
\(\Leftrightarrow\left|x-\dfrac{2}{5}\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{2}{5}=-2\Rightarrow x=-2+\dfrac{2}{5}=\dfrac{-8}{5}\\x-\dfrac{2}{5}=2\Rightarrow x=2+\dfrac{2}{5}=\dfrac{12}{5}\end{matrix}\right.\)
3.
a) \(\dfrac{16}{2^n}=2\)
\(\Leftrightarrow2^n=16:2\)
\(\Leftrightarrow2^n=8\)
\(\Leftrightarrow2^n=2^3\)
\(\Leftrightarrow n=3\)
b) \(\dfrac{\left(-3\right)^n}{81}=-27\)
\(\Leftrightarrow\left(-3\right)^n=\left(-27\right).81\)
\(\Leftrightarrow\left(-3\right)^n=\left(-3\right)^3.\left(-3\right)^4\)
\(\Leftrightarrow\left(-3\right)^n=\left(-3\right)^7\)
\(\Leftrightarrow n=7\)
4. Ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}\) (1)
\(\dfrac{y}{5}=\dfrac{z}{4}\Rightarrow\dfrac{y}{15}=\dfrac{z}{12}\) (2)
Từ (1) và (2) suy ra \(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}\)
Vì \(x-y+x=-49\) ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-49}{7}=-7\)
Vậy \(\left\{{}\begin{matrix}x=\left(-7\right).10=-70\\y=\left(-7\right).15=-105\\z=\left(-7\right).12=-84\end{matrix}\right.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{4}=\frac{x^4+y^4}{16+256}=\frac{16}{272}=\frac{1}{17}\)
\(\Rightarrow x=\frac{2}{17};y=\frac{4}{17}\)