K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2021

\(\left(x-4\right)\left(x+4\right)-\left(x+2\right)^2=16-3x\)

\(x^2-16-x^2-4x-4=16-3x\)

\(-20-4x-16+3x=0\)

\(-36-x=0\)

\(x=-36\)

8 tháng 11 2018

a\(\left(x+2\right)\cdot\left(x^2-2x+4\right)=x^3-2x^2+4x+2x^2-4x+8=x^3+8\)

b.\(\left(3x^4-2x^2+4x-2\right):\left(2x+2\right)=1.5x^3+1.5x^4-x-x^2+2-1=1.5x^4+1.5x^3-x^2-x+1\)

f.\(x^2+13x+22=\left(x+2\right)\cdot\left(x+11\right)=>x=-2hoacx=-11\)

mình chỉ làm dc thế thôi bạn qua fl +like instagram của mk dc k _cpo.04_ mình mới lập

18 tháng 11 2022

e: =>x^2(x-4)+16x-64+a+64 chia hết cho x-4

=>a+64=0

=>a=-64

g: =(x-4)(x+4)+(x+4)^2

=(x+4)(x-4+x+4)

=2x(x+4)

d: \(=\dfrac{2x^2-4x+4x-8-42}{x-2}=2x+4+\dfrac{-42}{x-2}\)

 

29 tháng 1 2017

mình chỉ viết đáp án thôi nhé! còn nếu ý nào bạn cần lời giải chi tiết mình sẽ giải cho!

a) S= { -2/3;-3/2}

b) S= {-5;1}

c) S= {-1/2;1}

d) S= {3/7;4}

e) S= {3;5}

NHỚ BẤM ĐÚNG CHO MÌNH NHÉ!

29 tháng 1 2017

cho mk lời giải chi tiết đi

21 tháng 8 2018

\(A=\left(x+2\right)\left(x^2-2x+4\right)-\left(x^3-2\right)\)

\(\Rightarrow A=\left(x^3+8\right)-\left(x^3-2\right)\)

\(\Rightarrow A=x^3+8-x^3+2\)

\(\Rightarrow A=\left(x^3-x^3\right)+\left(8+2\right)\)

\(\Rightarrow A=10\)

21 tháng 8 2018

\(A=\left(x+2\right)\left(x^2-2x+4\right)-\left(x^3-2\right)\)

\(=x^3+8-x^3+2\)

\(=10\)

\(B=\left(x+2\right)\left(x-2\right)\left(x^2+2x+4\right)\left(x^2-2x+4\right)\)

\(=\left(x+2\right)\left(x^2-2x+4\right)\left(x-2\right)\left(x^2+2x+4\right)\)

\(=\left(x^3+8\right)\left(x^3-8\right)\)

\(=x^6-64\)

\(C=\left(x^2+3x+1\right)^2+\left(3x-1\right)^2-2\left(x^2+3x+1\right)\left(3x-1\right)\)

\(=\left(x^2+3x+1\right)^2-2\left(x^2+3x+1\right)\left(3x-1\right)+\left(3x-1\right)^2\)

\(=\left(x^2+3x+1-3x+1\right)^2\)

\(=\left(x^2+2\right)^2\)

\(D=\left(3x^3+3x+1\right)\left(3x^3-3x+1\right)-\left(3x^3+1\right)^2\)

\(=\left(3x^3+1+3x\right)\left(3x^3+1-3x\right)-\left(3x^3+1\right)^2\)

\(=\left(3x^3+1\right)^2-9x^2-\left(3x^3+1\right)^2\)

\(=-9x^2\)

\(E=\left(2x^2+2x+1\right)\left(2x^2-2x+1\right)-\left(2x^2+1\right)^2\)

\(=\left(2x^2+1+2x\right)\left(2x^2+1-2x\right)-\left(2x^2+1\right)^2\)

\(=\left(2x^2+1\right)^2-4x^2-\left(2x^2+1\right)^2\)

\(=-4x^2\)

18 tháng 7 2017

a) \(\left(4x-1\right)^2-\left(3x+2\right)\left(3x-2\right)=\left(7x-1\right)\left(x+2\right)+\left(2x+1\right)^2-\left(4x^2+7\right)\)(1)

\(\Leftrightarrow\left(16x^2-8x+1\right)-\left(9x^2-4\right)=\left(7x^2+14x-x-2\right)+\left(4x^2+4x+1\right)-\left(4x^2+7\right)\)

\(\Leftrightarrow16x^2-8x+1-9x^2+4=7x^2+13x-2+4x^2+4x+1-4x^2-7\)

\(\Leftrightarrow7x^2-8x+5=7x^2+17x-8\)

\(\Leftrightarrow7x^2-8x-7x^2-17x=-8-5\)

\(\Leftrightarrow-25x=-13\)

\(\Leftrightarrow x=\dfrac{13}{25}\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{13}{25}\right\}\)

18 tháng 7 2017

gắp cái gì

26 tháng 8 2016

a)x2(x+1)+2x(x+1)=0

=>(x2+2x)(x+1)=0

=>x(x+2)(x+1)=0

=>x=0 hoặc x+2=0 hoặc x+1=0

=>x=0 hoặc x=-2 hoặc x=-1

 b)x(3x-2)-5(2-3x)=0

=>x(3x-2)+5(3x-2)=0

=>(x+5)(3x-2)

=>x+5=0 hoặc 3x-1=0

=>x=-5 hoặc \(x=\frac{2}{3}\)

c)\(\frac{4}{9}-25x^2=0\)

\(\Rightarrow\left(\frac{2}{3}\right)^2-\left(5x\right)^2=0\)

\(\Rightarrow\left(\frac{2}{3}-5x\right)\left(\frac{2}{3}+5x\right)=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}\frac{2}{3}-5x=0\\\frac{2}{3}+5x=0\end{array}\right.\)

\(\Rightarrow x=\pm\frac{2}{15}\)

d)\(x^2-x+\frac{1}{4}=0\)

\(\Rightarrow\frac{4x^2}{4}-\frac{4x}{4}+\frac{1}{4}=0\)

\(\Rightarrow\frac{4x^2-4x+1}{4}=0\)

\(\Rightarrow4x^2-4x+1=0\)

\(\Rightarrow\left(2x-1\right)^2=0\)

\(\Rightarrow x=\frac{1}{2}\)

 

 

26 tháng 8 2016

a)17*91,5+170*0,85

 =17*91,5+17*10*0,85

=17*91,5+17*8,5

=17*(91,5+8,5)

=17*100

=1700

b)20162-162

=(2016+16)(2016-16)

=2032*2000

=4064000

c)x(x-1)-y(1-x)

=x(x-1)+y(x-1)

=(x-1)(x+y)

Thay x=2001 và y=2999 đc: 

=(2001-1)(2001+2999)

=2000*5000

=10 000 000

 

8 tháng 1 2018

Bài 2: a) \(3x^3-3x=0\Leftrightarrow3x\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

b) \(x^2-x+\frac{1}{4}=0\Leftrightarrow x^2-2.\frac{1}{2}+\left(\frac{1}{2}\right)^2=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

24 tháng 2 2017

a, \(\frac{x+16}{49}+\frac{x+18}{47}=\frac{x+20}{45}-1\)

\(\Leftrightarrow1+\frac{x+16}{49}+1+\frac{x+18}{47}=\frac{x+20}{45}-1+2\)

\(\Leftrightarrow\frac{x+16+49}{49}+\frac{x+18+47}{47}=\frac{x+20+45}{45}\)

\(\Leftrightarrow\frac{x+65}{49}+\frac{x+65}{47}-\frac{x+65}{45}=0\)

\(\Leftrightarrow\left(x+65\right)\left(\frac{1}{49}+\frac{1}{47}-\frac{1}{45}\right)=0\)

Ta có: \(\frac{1}{49}+\frac{1}{47}-\frac{1}{45}\)>0

\(\Rightarrow x+65=0\)

\(\Leftrightarrow x=-65\)

Vậy x = -65

b, \(\frac{x-69}{30}+\frac{x-67}{32}+\frac{x-65}{34}=\frac{x-63}{36}+\frac{x-61}{38}+\frac{x-59}{40}\)

\(\Leftrightarrow\frac{x-69}{30}-1+\frac{x-67}{32}-1+\frac{x-65}{34}-1+\frac{x-63}{36}-1+\frac{x-61}{38}-1+\frac{x-59}{40}-1\)

\(\Leftrightarrow\frac{x-99}{30}+\frac{x-99}{32}+\frac{x-99}{34}-\frac{x-99}{36}-\frac{x-99}{38}-\frac{x-99}{40}=0\)

\(\Leftrightarrow\left(x-99\right)\left(\frac{1}{30}+\frac{1}{32}+\frac{1}{34}-\frac{1}{36}-\frac{1}{38}-\frac{1}{40}\right)=0\)

\(\frac{1}{30}+\frac{1}{32}+\frac{1}{34}-\frac{1}{36}-\frac{1}{38}-\frac{1}{40}\)>0

\(\Rightarrow x-99=0\)

\(\Leftrightarrow x=99\)

Vậy x =99

18 tháng 8 2016

\(\left(8x^3-60x^2+150x-125\right)-\left(27x^3-108x^2+144x-64\right)+\left(x^3+3x^2+3x+1\right)=0\)

\(-18x^3+51x^2+9x-60=0\)

\(\left(2x-5\right)\left(x+1\right)\left(3x-4\right)=0\)

\(\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-1\\x=\frac{4}{3}\end{array}\right.\)

30 tháng 1 2017

a) (x-1)x(x+1)(x+2) = 24

<=> [(x-1)(x+2)][x(x+1) = 24

<=> (x^2+x-2)(x^2+x) = 24     (1)

Đặt t=x^2+x-1 = (x+1/2)^2 - 5/4    (*)

(1) trở thành (t-1)(t+1) = 24

<=> t^2 - 1 - 24 = 0

<=> t^2 - 25 = 0

<=> t^2 = 25

<=> t=5 hoặc t=-5

Mà t >= -5/4 ( từ *) => t = (x+1/2)^2-5/4 = 5

<=> (x+1/2)^2 = 25/4

Đến đây dễ r`

30 tháng 1 2017

c) x^4 + 3x^3 + 4x^2 + 3x + 1 = 0

<=> x^4 + x^3 + 2x^3 + 2x^2 + 2x^2 + 2x + x + 1 = 0

<=> (x+1)(x^3 + 2x^2 + 2x + 1) = 0

<=> (x +1)(x^3 + x^2 + x^2 + x + x + 1) = 0

<=> (x+1)^2.(x^2+x+1) = 0

Mà x^2+x+1 = (x+1/2)^2 + 3/4 > 0

Nên x+1=0 <=> x=-1

Vậy ...