K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2016

a) Xét hàm số \(y=ax^4+bx^2+c\)

Ta có \(y'=4ax^3+2bx=2x\left(2ax^2+b\right)\)

         \(y'=0\Leftrightarrow x=0\) hoặc \(2ax^2+b=0\left(1\right)\)

Đồ thị  hàm số có 3 cực trị phân biệt khi và chỉ khi \(y'=0\) có 3 nghiệm phân biệt hay phương trình (1) có 2 nghiệm phân biệt khác 0 \(\Leftrightarrow ab< 0\) (*)

Với điều kiện (*) thì đồ  thị có 3 điểm cực trị là :

\(A\left(0;c\right);B\left(-\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right);C\left(\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right)\)

Ta có \(AB=AC=\sqrt{\frac{b^2-8ab}{16a^2}};BC=\sqrt{-\frac{2b}{a}}\) nên tam giác ABC vuông khi và chỉ khi vuông tại A.

Khi đó \(BC^2=2AB^2\Leftrightarrow b^3+8a=0\)

Do đó yêu cầu bài toán\(\Leftrightarrow\begin{cases}ab< 0\\b^3+8a=0\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\-8\left(m+1\right)^3+8=0\end{cases}\)\(\Leftrightarrow m=0\)

 

b) Ta có yêu cầu bài toán  \(\Leftrightarrow\begin{cases}ab< 0\\OA=BC\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\m^2-4\left(m+1\right)=0\end{cases}\)

                                                           \(\Leftrightarrow m=2\pm2\sqrt{2}\)

11 tháng 4 2016

Với mọi \(x\in R,y'=3x^2+6mx\Rightarrow y'=0\Leftrightarrow x=0\) hoặc \(x=-2m\)

Để hàm số có cực đại, cực tiểu thì phương trình \(y'=0\) có 2 nghiệm phân biệt \(\Leftrightarrow m\ne0\). Khi đó, tọa độ các điểm cực trị là \(A\left(0;2\right),B\left(-2m;4m^3+2\right)\)

\(S_{OAB}=1\Leftrightarrow OA.d\left(B;OA\right)=4\Leftrightarrow\left|2\right|=2\Leftrightarrow\begin{cases}m=1\\m=-1\end{cases}\) (thỏa mãn)

Vậy với \(m=\pm1\) thì hàm số có 2 cực trị thỏa mãn bài

30 tháng 4 2019

Ta có : y’ = 4x3-4( m+ 1) x= 4x( x2- (m+ 1) ).

Hàm số có  điểm cực trị khi và chỉ khi y’ = 0 có  nghiệm phân biệt hay m+1> 0 suy ra m> - 1. (*)

Khi đó, ta có: 

Do đó  O A = B C ⇔ m = 2 m + 1 ⇔ m 2 - 4 m - 4 = 0 ( ∆ ' = 8 ) ⇔ m = 2 ± 2 2 (thỏa mãn (*)).

Vậy  m = 2 ± 2 2 .

Chọn  A.

29 tháng 5 2017

Chọn A

Ta có:

Hàm số có 3 điểm cực trị khi và chỉ khi :

y ' có 3 nghiệm phân biệt

⇔ m + 1 > 0 ⇔ m > - 1   ( * )

Khi đó, ta có  y ' = 0

(vai trò của B, C trong bài toán là như nhau ) nên ta giả sử

Ta có: O A ( 0 ; m ) ⇒ O A = m ⇒ B C = 2 m + 1

Do đó OA = BC

⇔ m = 2 ± 2 2 ( t h ỏ a   m ã n )   ( * )

Vậy  m = 2 ± 2 2

29 tháng 4 2016

a) Ta có : \(y'=3x^2+2\left(m-1\right)x+m\left(m-3\right)\)

Hàm số (1) có cực đại và cực tiểu nằm 2 phía đối với trục tung <=> phương trình : \(3x^2+2\left(m-1\right)x+m\left(m-3\right)=0\) có 2 nghiệm phân biệt trái dấu

\(\Leftrightarrow P< 0\Leftrightarrow m\left(m-3\right)< 0\Leftrightarrow0< m< 3\)

Vậy \(0< m< 3\) là giá trị cần tìm

b) Khi m = 1 ta có : \(y=x^3-2x\)

Gọi \(M\left(a;a^3-2a\right)\in\left(C\right),a\ne0\)

Ta có \(y'=3x^2-2\) nên hệ số góc của \(\Delta\) là \(y'\left(a\right)=3a^2-2\)

Ta có \(\overrightarrow{OM}\left(a;a^3-2a\right)\) nên hệ số góc đường thẳng OM là \(k=a^2-2\)

Do đó : \(\Delta\perp OM\Leftrightarrow y'_a.k=-1\)

                           \(\Leftrightarrow\left(3a^2-2\right)\left(a^2-2\right)=-1\Leftrightarrow3a^4-8a^2+5=0\)

                \(M_1\left(1;-1\right);M_1\left(-1;1\right);M_3\left(-\frac{\sqrt{15}}{3};\frac{\sqrt{15}}{9}\right);M_4\left(\frac{\sqrt{15}}{3};-\frac{\sqrt{15}}{9}\right)\)          \(\Leftrightarrow\left[\begin{array}{nghiempt}a^2=1\\a^2=\frac{5}{3}\end{array}\right.\)  \(\Leftrightarrow\left[\begin{array}{nghiempt}a=\pm1\\a=\pm\frac{\sqrt{5}}{3}\end{array}\right.\)(Thỏa mãn)

Suy ra có 4 điểm thỏa mãn đề bài :\(M_1\left(1;-1\right);M_2\left(-1;1\right);M_3\left(-\frac{\sqrt{15}}{3};\frac{\sqrt{15}}{9}\right);M_4\left(\frac{\sqrt{15}}{3};-\frac{\sqrt{15}}{9}\right)\)

 

11 tháng 4 2016

Ta có \(y'=3mx^2-6mx\Rightarrow y'=0\Rightarrow\begin{cases}x=0\\x=2\end{cases}\) với mọi m khác 0

Do y' đổi dấu qua x=0 và x=2 nên đồ thị có 2 điểm cực trị => Điều phải chứng minh 

Với \(x=0\Rightarrow y=3\left(m-1\right);x=2\Rightarrow y=-m-3\)

Do vai trò của A, B như nhau nên không mất tính tổng quát giả sử \(A\left(0;3m-3\right);B\left(2;-m-3\right)\)

Ta có : \(OA^2+OB^2-2OA^2=-20\Leftrightarrow9\left(m-1\right)^2+4+\left(m+3\right)^2-2\left(4-16m\right)^2=-20\)

                                           \(\Leftrightarrow11m^2+6m-17=0\Leftrightarrow\begin{cases}m=1\\m=-\frac{17}{11}\end{cases}\)

Kết luận : Với \(\begin{cases}m=1\\m=-\frac{17}{11}\end{cases}\) yêu cầu bài toán được thỏa mãn

 

21 tháng 4 2016

Phương trình hoành độ giao điểm \(3x^2+2mx+3m-4=0\left(1\right)\) với x. Đường thẳng d cắt đồ thị (C) tại hai điểm phân biệt khi và chỉ khi phương trình (1) có 2 nghiệm phân biệt khác -1 

\(\Leftrightarrow\begin{cases}9m^2-36m+48>0\\0.m-1\ne0\end{cases}\) (đúng với mọi m)

Gọi \(x_1;x_2\) là các nghiệm của phương trình (1), ta có : \(\begin{cases}x_1+x_2=-m\\x_1x_2=\frac{3m-4}{3}\end{cases}\) (*)

Giả sử \(A\left(x_1;x_1+m\right);B\left(x_2;x_2+m\right)\)

Khi đó ta có \(OA=\sqrt{x^2_1+\left(x_1+m\right)^2};OA=\sqrt{x^2_2+\left(x_2+m\right)^2}\)

Kết hợp (*) ta được \(OA=OB=\sqrt{x_1^2+x_2^2}\) 

Suy ra tam giác OAB cân tại O

Ta có \(AB=\sqrt{2\left(x_1-x_2\right)^2}\). Tam giác OAB đều \(\Leftrightarrow OA^2=AB^2\Leftrightarrow x_1^2+x_2^2=2\left(x_1-x_2\right)^2\)          

                                                                                                     \(\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=0\)

                                                                                                     \(\Leftrightarrow m^2-6m+8=0\Leftrightarrow m=2\) hoặc m=4

12 tháng 10 2019

Chọn D

Ta có  y ' = - 3 x 2 + 3 m

y ' = 0 ⇔ x 2 - m = 0 (*)

Đồ thị hàm số (1) có 2 điểm cực trị 

⇔ P T ( * )  có 2 nghiệm phân biệt  ⇔ m > 0 ( * * )

Khi đó 2 điểm cực trị

Tam giác OAB vuông tại O

V ậ y   m = 1 2