\(\sqrt{x+\dfrac{3}{x}}\)=\(\dfrac{x^2+7}{2\left(x+1\right)}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2024

Điều kiện:

 \(\left\{{}\begin{matrix}x+\dfrac{3}{x}=\dfrac{x^2+3}{x}\ge0\\\dfrac{x^2+7}{2\left(x+1\right)}\ge0\end{matrix}\right.\)

mà \(x^2\ge0\forall x\Rightarrow\left\{{}\begin{matrix}x^2+3>0\forall x\\x^2+7>0\forall x\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x^2+3}{x}\ge0\\\dfrac{x^2+7}{2\left(x+1\right)}\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0\\2\left(x+1\right)>0\Leftrightarrow x+1>0\Leftrightarrow x>-1\end{matrix}\right.\)

\(\Leftrightarrow x>0\)

\(\sqrt{x+\dfrac{3}{x}}=\dfrac{x^2+7}{2\left(x+1\right)}\)

\(\Leftrightarrow\sqrt{\dfrac{x^2+3}{x}}=\dfrac{x^2+7}{2\left(x+1\right)}\)

\(\Leftrightarrow\left(\sqrt{\dfrac{x^2+3}{x}}\right)^2=\left[\dfrac{x^2+7}{2\left(x+1\right)}\right]^2\)

\(\Leftrightarrow\dfrac{x^2+3}{x}=\dfrac{\left(x^2+7\right)^2}{\left[2\left(x+1\right)\right]^2}\)

\(\Leftrightarrow\dfrac{x^2+3}{x}=\dfrac{x^4+14x^2+49}{4\left(x+1\right)^2}=\dfrac{x^4+14x^2+49}{4\left(x^2+2x+1\right)}=\dfrac{x^4+14x^2+49}{4x^2+8x+4}\)

\(\Leftrightarrow\dfrac{\left(x^2+3\right)\left(4x^2+8x+4\right)}{x\left(4x^2+8x+4\right)}=\dfrac{x\left(x^4+14x^2+49\right)}{x\left(4x^2+8x+4\right)}\)

\(\Leftrightarrow\left(x^2+3\right)\left(4x^2+8x+4\right)=x\left(x^4+14x^2+49\right)\)

\(\Leftrightarrow x^2\left(4x^2+8x+4\right)+3\left(4x^2+8x+4\right)=x\left(x^4+14x^2+49\right)\)

\(\Leftrightarrow4x^4+8x^3+4x^2+12x^2+24x+12=x^5+14x^3+49x\)

\(\Leftrightarrow4x^4+8x^3+16x^2+24x+12=x^5+14x^3+49x\)

\(\Leftrightarrow x^5-4x^4+14x^3-8x^3-16x^2+49x-24x-12=0\)

\(\Leftrightarrow x^5-4x^4+6x^3-16x^2+25x-12=0\)

\(\Leftrightarrow x^5-x^4-3x^4+3x^3+3x^3-3x^2-13x^2+13x+12x-12=0\)

\(\Leftrightarrow x^4\left(x-1\right)-3x^3\left(x-1\right)+3x^2\left(x-1\right)-13x\left(x-1\right)+12\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^4-3x^3+3x^2-13x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^4-x^3-2x^3+2x^2+x^2-x-12x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^3\left(x-1\right)-2x^2\left(x-1\right)+x\left(x-1\right)-12\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-1\right)\left(x^3-2x^2+x-12\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^3-2x^2+x-12\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^3-3x^2+x^2-3x+4x-12\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left[x^2\left(x-3\right)+x\left(x-3\right)+4\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x-3\right)\left(x^2+x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\\x^2+x+4=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=3\left(tm\right)\\x^2+x+\dfrac{1}{4}+\dfrac{15}{4}=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=3\left(tm\right)\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}=0\end{matrix}\right.\)

Có: \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}>0\forall x\)

\(\Rightarrow x^2+x+4=0\) vô nghiệm

Vậy: \(x\in\left\{1;3\right\}\)

2 tháng 5 2024

kinh thật!

16 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

4 tháng 4 2017

a) 3(x2 + x)2 – 2(x2 + x) – 1 = 0. Đặt t = x2 + x, ta có:

3t2 – 2t – 1 = 0; t1 = 1, t2 =

Với t1 = 1, ta có: x2 + x = 1 hay x2 + x – 1 = 0, ∆ = 4 + 1 = 5, √∆ = √5

x1 = , x2 =

Với t2 = , ta có: x2 + x = hay 3x2 + 3x + 1 = 0:

Phương trình vô nghiệm, vì ∆ = 9 – 4 . 3 . 1 = -3 < 0

Vậy phương trình đã cho có hai nghiệm: x1 = , x2 =

b) (x2 – 4x + 2)2 + x2 – 4x – 4 = 0

Đặt t = x2 – 4x + 2, ta có phương trình t2 + t – 6 = 0

Giải ra ta được t1 = 2, t2 = -3.

- Với t1 = 2 ta có: x2 – 4x + 2 = 2 hay x2 – 4x = 0. Suy ra x1 = 0, x2 = 4.

- Với t1 = -3, ta có: x2 – 4x + 2 = -3 hay x2 – 4x + 5 = 0.

Phương trình này vô nghiệm vì ∆ = (-4)2 – 4 . 1 . 5 = 16 – 20 = -4 < 0

Vậy phương trình đã cho có hai nghiệm: x1 = 0, x2 = 4.

c) x - √x = 5√x + 7 ⇔ x - 6√x – 7 = 0. Điều kiện: x ≥ 0. Đặt t = √x, t ≥ 0

Ta có: t2 – 6t – 7 = 0. Suy ra: t1 = -1 (loại), t2 = 7

Với t = 7, ta có: √x = 7. Suy ra x = 49.

Vậy phương trình đã cho có một nghiệm: x = 49

d) – 10 . = 3. Điều kiện: x ≠ -1, x ≠ 0

Đặt = t, ta có: = . Vậy ta có phương trình: t - – 3 = 0

hay: t2 – 3t – 10 = 0. Suy ra t1 = 5, t2 = -2.

- Với t1 = 5, ta có = 5 hay x = 5x + 5. Suy ra x =

- Với t2 = -2, ta có = -2 hay x = -2x – 2. Suy ra x = .

Vậy phương trình đã cho có hai nghiệm: x1 = , x2 =



2 tháng 8 2018

\(a.\left(\sqrt{x}-7\right)\left(\sqrt{x}-8\right)=x+11\left(x\ge0\right)\)

\(\Leftrightarrow x-15\sqrt{x}+56=x+11\)

\(\Leftrightarrow15\sqrt{x}=45\)

\(\Leftrightarrow x=9\left(TM\right)\)

\(b.\left(\sqrt{x}+3\right)\left(\sqrt{x}-5\right)=x-17\left(x\ge0\right)\)

\(\Leftrightarrow x-2\sqrt{x}-15=x-17\)

\(\Leftrightarrow2\sqrt{x}=2\)

\(x=1\left(TM\right)\)

\(c.1-\dfrac{2\sqrt{x}-5}{6}=\dfrac{3-\sqrt{x}}{4}\left(x\ge0\right)\)

\(\Leftrightarrow\dfrac{2\left(2\sqrt{x}-5\right)+3\left(3-\sqrt{x}\right)}{12}=1\)

\(\Leftrightarrow x=169\left(TM\right)\)

\(d.\left(\sqrt{x}+3\right)^2-x+3=0\left(x\ge0\right)\)

\(\Leftrightarrow6\sqrt{x}=-12\left(vô-lý\right)\)

KL...............