\(\sqrt{5x^2+27x+25}-5\sqrt{x+1}=\sqrt{x^2-4}\). giải phương trình trên

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2019

ĐK:\(\hept{\begin{cases}5x^2+27x+25\ge0\\x+1\ge0\\x^2-4\ge0\end{cases}}\)(*)

\(pt\Leftrightarrow\sqrt{5x^2+27x+25}=5\sqrt{x+1}+\sqrt{x^2-4}\)

\(\Leftrightarrow5x^2+27x+25=25x+25+x^2-4+10\sqrt{\left(x+1\right)\left(x^2-4\right)}\)

\(\Leftrightarrow4x^2+2x+4=10\sqrt{\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow2x^2+x+2=5\sqrt{\left(x^2-x-2\right)\left(x+2\right)}\)

Đặt \(\hept{\begin{cases}\sqrt{x^2-x-2}=a\\\sqrt{x+2}=b\end{cases}}\)\(\Rightarrow2a^2+3b^2=5ab\Leftrightarrow\left(a-b\right)\left(2a-3b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\2a=3b\end{cases}}\)..............

NV
11 tháng 6 2019

ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow\sqrt{5x^2+27x+25}=5\sqrt{x+1}+\sqrt{x^2-4}\)

\(\Leftrightarrow5x^2+27x+25=25x+25+x^2-4+10\sqrt{\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow2x^2+x+2=5\sqrt{\left(x^2-x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow2\left(x^2-x-2\right)+3\left(x+2\right)=5\sqrt{\left(x^2-x-2\right)\left(x+2\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x-2}=a\\\sqrt{x+2}=b\end{matrix}\right.\)

\(\Rightarrow2a^2+3b^2=5ab\Leftrightarrow2a^2-5ab+3b^2=0\)

\(\Leftrightarrow\left(a-b\right)\left(2a-3b\right)=0\Leftrightarrow\left[{}\begin{matrix}a=b\\2a=3b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x-2}=\sqrt{x+2}\\2\sqrt{x^2-x-2}=3\sqrt{x+2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-2=x+2\\4\left(x^2-x-2\right)=9\left(x+2\right)\end{matrix}\right.\) \(\Leftrightarrow...\)

1 tháng 8 2020

bình phương 2 vế ?

a, \(\sqrt{x-2}+\sqrt{x-3}=5\left(ĐK:x\ge3\right)\)

\(< =>x+\sqrt{\left(x-2\right)\left(x-3\right)}=15\)

\(< =>\left(x-2\right)\left(x-3\right)=\left(15-x\right)\left(15-x\right)\)

\(< =>x^2-5x+6=x^2-30x+225\)

\(< =>25x-219=0\)

\(< =>x=\frac{219}{25}\)

25 tháng 5 2019

1, \(x^2-5x+4-\sqrt{5-x}-\sqrt{x-2}=0\)ĐKXĐ \(2\le x\le5\)

ĐK dấu bằng xảy ra \(x^2-5x+4\ge0\)

Kết hơp với ĐKXĐ=> \(4\le x\le5\)

Khi đó Phương trình tương đương

\(x^2-7x+11+\left(x-4-\sqrt{5-x}\right)+\left(x-3-\sqrt{x-2}\right)=0\)

<=> \(x^2-7x+11+\frac{x^2-7x+11}{x-4+\sqrt{5-x}}+\frac{x^2-7x+11}{x-3+\sqrt{x-2}}=0\)

=> \(\orbr{\begin{cases}x^2-7x+11=0\\1+\frac{1}{x-4+\sqrt{5-x}}+\frac{1}{x-3+\sqrt{x-2}}=0\left(2\right)\end{cases}}\)

Phương trình (2) vô nghiệm với \(4\le x\le5\)=> VT>0

\(x^2-7x+11=0\)

Với \(4\le x\le5\)

\(S=\left\{\frac{7+\sqrt{5}}{2}\right\}\)

25 tháng 5 2019

2.\(\sqrt{x+2}+\sqrt{3-x}=x^3+x^2-4x-1\)ĐKXĐ \(-2\le x\le3\)

<=> \(3x^3+3x^2-12x-3=3\sqrt{x+2}+3\sqrt{3-x}\)

<=> \(3x^3+3x^2-12x-12+\left(x+4-3\sqrt{x+2}\right)+\left(5-x-3\sqrt{3-x}\right)=0\)

<=> \(3\left(x^2-x-2\right)\left(x+2\right)+\frac{x^2-x-2}{x+4+3\sqrt{x+2}}+\frac{x^2-x-2}{5-x+3\sqrt{3-x}}=0\)

=> \(\orbr{\begin{cases}x^2-x-2=0\\3\left(x+2\right)+\frac{1}{x+4+3\sqrt{x+2}}+\frac{1}{5-x+3\sqrt{x-3}}=0\left(2\right)\end{cases}}\)

Phương trình (2) vô nghiệm với\(-2\le x\le3\)=> VT>0

\(S=\left\{2;-1\right\}\)

13 tháng 3 2021

a)\(\sqrt{3x+1}+2x=\sqrt{x-4}-5\left(ĐKXĐ:x\ge4\right)\)

\(\Leftrightarrow\left(\sqrt{3x+1}-\sqrt{x-4}\right)+\left(2x+5\right)=0\)

\(\Leftrightarrow\frac{3x+1-x+4}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)

\(\Leftrightarrow\frac{2x+5}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1\right)=0\)

13 tháng 3 2021

a') (tiếp)

\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2,5\left(KTMĐKXĐ\right)\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\)

Xét phương trình \(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\)(1)

Với mọi \(x\ge4\), ta có:

\(\sqrt{3x+1}>0\)\(\sqrt{x-4}\ge0\)

\(\Rightarrow\sqrt{3x+1}+\sqrt{x-4}>0\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}>0\)

\(\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1>0\)

Do đó phương trình (1) vô nghiệm.

Vậy phương trình đã cho vô nghiệm.

can x = 1 - can x+1

bphuong

x^2=2+2 can x+1

5 tháng 1 2017

1)\(\left(DKXD:x\ge0\right)\)

\(\Leftrightarrow x+\sqrt{x\left(x+1\right)}=1\)

\(\Leftrightarrow\sqrt{x\left(x+1\right)}=1-x\)

\(\Leftrightarrow x\left(x+1\right)=1-2x+x^2\left(0\le x\le1\right)\)

\(\Leftrightarrow x^2+x=1-2x+x^2\)

\(\Leftrightarrow3x-1=0\)

\(\Leftrightarrow x=\frac{1}{3}\)

Vậy pt có nghiệm \(x=\frac{1}{3}\)

22 tháng 8 2017

bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

22 tháng 8 2017

bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)