\(\sqrt{3,6\times16,9}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2022

\(\sqrt{3,6\times16,9}=\sqrt{60,84}=7,8\)

12 tháng 7 2022

7,8

a: \(=2\cdot3+\sqrt{15}-2\sqrt{15}=6-\sqrt{15}\)

b: \(=5\sqrt{10}+2\cdot5-5\sqrt{10}=10\)

c: \(=2\sqrt{7}\cdot\sqrt{7}-\sqrt{12}\cdot\sqrt{7}-\sqrt{7}\cdot\sqrt{7}+2\sqrt{21}=2\cdot7-7=7\)

d: \(=\left(2\sqrt{11}-3\sqrt{2}\right)\cdot\sqrt{11}+3\sqrt{22}=2\cdot11=22\)

21 tháng 6 2018

\(1)\) Ta có : 

\(\left(\sqrt{3\sqrt{2}}\right)^4=\left[\left(\sqrt{3\sqrt{2}}\right)^2\right]^2=\left(3\sqrt{2}\right)^2=9.2=18\)

\(\left(\sqrt{2\sqrt{3}}\right)^4=\left[\left(\sqrt{2\sqrt{3}}\right)^2\right]^2=\left(2\sqrt{3}\right)^2=4.3=12\)

Vì \(18>12\) nên \(\left(\sqrt{3\sqrt{2}}\right)^4>\left(\sqrt{2\sqrt{3}}\right)^4\)

\(\Rightarrow\)\(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

Vậy \(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

Chúc bạn học tốt ~ 

So sánh: a) 4\(\sqrt{7}\) và 3\(\sqrt{13}\) b) 3\(\sqrt{12}\) và 2\(\sqrt{16}\) c) \(\frac{1}{4}\)\(\sqrt{82}\) và 6\(\sqrt{\frac{1}{7}}\) d) \(\frac{1}{2}\)\(\sqrt{\frac{17}{2}}\) và \(\frac{1}{3}\)\(\sqrt{19}\) e) 3\(\sqrt{3}\) -2\(\sqrt{2}\) và 2 f) \(\sqrt{7}\) + \(\sqrt{5}\) và \(\sqrt{49}\) g) \(\sqrt{2}\) + \(\sqrt{11}\) và \(\sqrt{3}\) +5 h)\(\frac{1}{2}\) \(\sqrt{\frac{17}{2}}\) và \(\frac{1}{3}\) \(\sqrt{19}\) i) \(\sqrt{21}\) -\(\sqrt{5}\) và \(\sqrt{20}\)...
Đọc tiếp

So sánh:

a) 4\(\sqrt{7}\) và 3\(\sqrt{13}\)

b) 3\(\sqrt{12}\) và 2\(\sqrt{16}\)

c) \(\frac{1}{4}\)\(\sqrt{82}\) và 6\(\sqrt{\frac{1}{7}}\)

d) \(\frac{1}{2}\)\(\sqrt{\frac{17}{2}}\)\(\frac{1}{3}\)\(\sqrt{19}\)

e) 3\(\sqrt{3}\) -2\(\sqrt{2}\) và 2

f) \(\sqrt{7}\) + \(\sqrt{5}\)\(\sqrt{49}\)

g) \(\sqrt{2}\) + \(\sqrt{11}\)\(\sqrt{3}\) +5

h)\(\frac{1}{2}\) \(\sqrt{\frac{17}{2}}\)\(\frac{1}{3}\) \(\sqrt{19}\)

i) \(\sqrt{21}\) -\(\sqrt{5}\)\(\sqrt{20}\) -\(\sqrt{6}\)

j) \(\frac{1}{4}\) \(\sqrt{82}\) và 6\(\sqrt{\frac{1}{7}}\)

k) \(\sqrt{\sqrt{6}+\sqrt{20}}\)\(\sqrt{1+\sqrt{5}}\)

l) \(\sqrt{7}\) -\(\sqrt{2}\) và 1

m) \(\sqrt{30}\) - \(\sqrt{29}\)\(\sqrt{29}\)-\(\sqrt{28}\)

n) \(\sqrt{8}+\sqrt{5}\)\(\sqrt{7}+\sqrt{6}\)

o) \(\sqrt{27}+\sqrt{6}+1\)\(\sqrt{48}\)

p) 5\(\sqrt{2}\) + \(\sqrt{75}\) và 5\(\sqrt{3}\) +\(\sqrt{50}\)

q) \(\sqrt{5}\) - \(\sqrt{3}\)\(\frac{1}{2}\)

4
AH
Akai Haruma
Giáo viên
14 tháng 6 2019

a)

\(4\sqrt{7}=\sqrt{4^2.7}=\sqrt{112}\)

\(3\sqrt{13}=\sqrt{3^2.13}=\sqrt{117}\)

\(\sqrt{112}< \sqrt{117}\Rightarrow 4\sqrt{7}< 3\sqrt{13}\)

b) \(3\sqrt{12}=\sqrt{3^2.12}=\sqrt{9.2^2.3}=2\sqrt{27}>2\sqrt{16}\)

c)

\(\frac{1}{4}\sqrt{82}=\sqrt{\frac{82}{16}}=\sqrt{\frac{41}{8}}=\sqrt{5+\frac{1}{8}}\)

\(6\sqrt{\frac{1}{7}}=\sqrt{\frac{36}{7}}=\sqrt{5+\frac{1}{7}}\)

\(\sqrt{5+\frac{1}{8}}< \sqrt{5+\frac{1}{7}}\Rightarrow \frac{1}{4}\sqrt{82}< 6\sqrt{\frac{1}{7}}\)

d)

\(\frac{1}{2}\sqrt{\frac{17}{2}}=\sqrt{\frac{17}{8}}=\sqrt{2+\frac{1}{8}}\)

\(\frac{1}{3}\sqrt{19}=\sqrt{\frac{19}{9}}=\sqrt{2+\frac{1}{9}}\)

\(\sqrt{2+\frac{1}{8}}>\sqrt{2+\frac{1}{9}}\Rightarrow \frac{1}{2}\sqrt{\frac{17}{2}}> \frac{1}{3}\sqrt{19}\)

AH
Akai Haruma
Giáo viên
14 tháng 6 2019

e)

\(3\sqrt{3}-2\sqrt{2}=\sqrt{27}-\sqrt{8}\)

\(\sqrt{27}>\sqrt{25}; \sqrt{8}< \sqrt{9}\Rightarrow \sqrt{27}-\sqrt{8}> \sqrt{25}-\sqrt{9}=5-3=2\)

Vậy \(3\sqrt{3}-2\sqrt{2}>2\)

f)

\(\sqrt{7}+\sqrt{5}< \sqrt{9}+\sqrt{9}=6\)

\(\sqrt{49}=7\)

\(\Rightarrow \sqrt{7}+\sqrt{5}< 6< 7=\sqrt{49}\)
g)

\(\sqrt{2}< \sqrt{3}; \sqrt{11}< \sqrt{25}=5\)

\(\Rightarrow \sqrt{2}+\sqrt{11}< \sqrt{3}+5\)

h) Lặp lại câu d

i)

\(\sqrt{21}>\sqrt{20}\); \(\sqrt{5}< \sqrt{6}\)

\(\Rightarrow \sqrt{21}-\sqrt{5}> \sqrt{20}-\sqrt{6}\)

21 tháng 8 2016

\(2.3+\sqrt{15}-2\sqrt{15}=6-\sqrt{15}\)

\(5\sqrt{10}+2.5-5\sqrt{10}=10\)

\(14-2\sqrt{21}-7+2\sqrt{21}=7\)

\(33-3\sqrt{22}-11+3\sqrt{22}=22\)

21 tháng 7 2017

1,\(4\sqrt{5}+2\sqrt{5}-\sqrt{5}-15\sqrt{5}=-10\sqrt{5}\)

2,\(8\sqrt{5}-15\sqrt{5}+15\sqrt{5}-3\sqrt{5}=5\sqrt{5}\)

3,\(\left(28\sqrt{3}+9\sqrt{3}-4\sqrt{3}\right):\sqrt{3}=33\) 

4,\(7\sqrt{7a}+3\sqrt{7a}-2\sqrt{7a}=8\sqrt{7a}\)

5,\(-6\sqrt{a}-\sqrt{6a}+\sqrt{6a}=-6\sqrt{a}\)

6,\(8\sqrt{3}-12\sqrt{3}+5\sqrt{3}+2\sqrt{3}=3\sqrt{3}\)

a) Ta có: \(\sqrt{0.1}\cdot\sqrt{4000}\)

\(=\sqrt{\frac{1}{10}}\cdot\sqrt{4000}\)

\(=\sqrt{\frac{1}{10}\cdot4000}=\sqrt{400}=20\)

b) Ta có: \(\sqrt{\frac{9}{196}}=\sqrt{\left(\frac{3}{14}\right)^2}\)

\(=\left|\frac{3}{14}\right|\)

\(=\frac{3}{14}\)(Vì \(\frac{3}{14}>0\))

c) Ta có: \(\sqrt{16}\cdot\sqrt{36}-\sqrt{125}:\sqrt{0.01}\)

\(=\sqrt{16\cdot36}-\frac{\sqrt{125}}{\sqrt{\frac{1}{100}}}\)

\(=\sqrt{576}-\sqrt{125:\frac{1}{100}}\)

\(=24-\sqrt{125\cdot100}\)

\(=24-\sqrt{12500}\)

\(=24-50\sqrt{5}\)

d) Ta có: \(\left(\sqrt{112}-\sqrt{63}+\sqrt{7}\right):\sqrt{7}\)

\(=\left(4\sqrt{7}-3\sqrt{3}+\sqrt{7}\right):\sqrt{7}\)

\(=\frac{2\sqrt{7}}{\sqrt{7}}=2\)

e) Ta có: \(\sqrt{2.5}\cdot\sqrt{30}\cdot\sqrt{48}\)

\(=\sqrt{\frac{5}{2}\cdot30\cdot48}=\sqrt{3600}=60\)

a: Sửa đề: \(5\dfrac{1}{5}-\dfrac{1}{2}\sqrt{20}+\sqrt{5}\)

\(=5.2-\dfrac{1}{2}\cdot2\sqrt{5}+\sqrt{5}=5.2\)

b: \(=\dfrac{1}{2}\sqrt{2}+\dfrac{3}{2}\sqrt{2}+\dfrac{5}{2}\sqrt{2}=\dfrac{9}{2}\sqrt{2}\)

c: \(=2\sqrt{5}-3\sqrt{5}+9\sqrt{2}+\sqrt{77}=-\sqrt{5}+9\sqrt{2}+\sqrt{77}\)

d: \(=\dfrac{1}{10}\cdot10\sqrt{2}+\dfrac{2}{5}\sqrt{2}+0.4\cdot5\sqrt{2}\)

\(=\dfrac{17}{5}\sqrt{2}\)

13 tháng 6 2018

1.\(=5\sqrt{2}-3\sqrt{2}+10\sqrt{2}-9\sqrt{2}=3\sqrt{2}\)

2.\(=5\sqrt{5}+4\sqrt{5}-9\sqrt{5}=0\)

14 tháng 6 2018

Mình làm 5 bài trắc nha

Hỏi đáp Toán

14 tháng 6 2018

Hỏi đáp Toán