\(\sqrt{-x}\)

\(\sqrt{16x^2-25}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2020

\(\sqrt{-x}\) (mk nghĩ là nó vô nghiệm ngay từ đầu rồi)

\(\sqrt{16x^2-25}=\sqrt{\left(4x-5\right)\left(4x+5\right)}\)

Đkxđ : \(\left\{{}\begin{matrix}4x-5\ge0\\4x+5\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x\ge5\\4x\ge-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{5}{4}\\x\ge-\frac{5}{4}\end{matrix}\right.\)

\(\sqrt{4x^2-49}=\sqrt{\left(2x-7\right)\left(2x+7\right)}\)

Đkxđ : \(\left\{{}\begin{matrix}2x-7\ge0\\2x+7\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x\ge7\\2x\ge-7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{7}{2}\\x\ge-\frac{7}{2}\end{matrix}\right.\)

\(\sqrt{8-x^2}\)

đkxđ : \(8-x^2\ge0\Leftrightarrow-x^2\ge-8\Leftrightarrow x^2\le8\Leftrightarrow x\le\sqrt{8}\)

20 tháng 8 2020

ko bt đề bài của bài này là gì vậy bạn

10 tháng 5 2018

1000 bang 2

29 tháng 8 2020

a, \(\sqrt{4-5x}=12\Leftrightarrow4-5x=144\Leftrightarrow5x=140\Leftrightarrow x=28\)

b,ĐK :  \(x\ge7\)

 \(\sqrt{x^2-14x+49}-3x=1\Leftrightarrow\sqrt{\left(x-7\right)^2}=3x+1\)

\(\Leftrightarrow x-7=3x+1\Leftrightarrow-2x-8=0\Leftrightarrow x=-4\)( vô lí )

c, Bn làm nốt nhé 

29 tháng 8 2020

a) đk: \(x\le\frac{4}{5}\)

Ta có: \(\sqrt{4-5x}=12\)

\(\Leftrightarrow\left|4-5x\right|=144\)

\(\Rightarrow4-5x=144\)

\(\Leftrightarrow5x=-140\)

\(\Rightarrow x=-28\left(tm\right)\)

b) Ta có: \(\sqrt{x^2-14x+49}-3x=1\)

\(\Leftrightarrow\sqrt{\left(x-7\right)^2}=1+3x\)

\(\Leftrightarrow\left|x-7\right|=3x+1\)

\(\Leftrightarrow\orbr{\begin{cases}x-7=3x+1\\x-7=-3x-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-8\\4x=6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-4\\x=\frac{3}{2}\end{cases}}\)

13 tháng 6 2018

Mình làm một vài câu thôi nhé, các câu còn lại tương tự.

Giải:

a) ??? Đề thiếu

b) \(\sqrt{-3x+4}=12\)

\(\Leftrightarrow-3x+4=144\)

\(\Leftrightarrow-3x=140\)

\(\Leftrightarrow x=\dfrac{-140}{3}\)

Vậy ...

c), d), g), h), i), p), q), v), a') Tương tự b)

w), x) Mình đã làm ở đây:

Câu hỏi của Ami Yên - Toán lớp 9 | Học trực tuyến

z) \(\sqrt{16\left(x+1\right)^2}-\sqrt{9\left(x+1\right)^2}=4\)

\(\Leftrightarrow4\left(x+1\right)-3\left(x+1\right)=4\)

\(\Leftrightarrow x+1=4\)

\(\Leftrightarrow x=3\)

Vậy ...

b') \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)

\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}=\sqrt{x+1}\)

\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}-\sqrt{x+1}=0\)

\(\Leftrightarrow4\sqrt{x+1}=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy ...

13 tháng 6 2018

- Câu a có chút thiếu sót, mong thông cảm :)

\(\sqrt{3x-1}\) = 4

20 tháng 8 2019

a) \(\sqrt{4x}=10\) (ĐKXĐ: 4x>=0 <=> x>=0)

\(\Leftrightarrow4x=100\)

\(\Leftrightarrow x=25\)

\(S=\left\{25\right\}\)

b) \(\sqrt{x^2-2x+1}=8\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}=8\)

\(\Leftrightarrow x-1=8\)

\(\Leftrightarrow x=9\)

\(S=\left\{9\right\}\)

c) \(\sqrt{x^2-6x+9}=\sqrt{1-6x+9x^2}\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=\sqrt{\left(1-3x\right)^2}\)

\(\Leftrightarrow x-3=1-3x\) hoặc \(\Leftrightarrow x-3=-1+3x\)

\(\Leftrightarrow x+3x=1+3\) \(\Leftrightarrow x-3x=-1+3\)

\(\Leftrightarrow4x=4\) \(\Leftrightarrow-2x=2\)

\(\Leftrightarrow x=1\) \(\Leftrightarrow x=-1\)

\(S=\left\{1;-1\right\}\)

d) \(\sqrt{2x-5}=x-2\)

\(\Leftrightarrow2x-5=x^2-4x+4\)

\(\Leftrightarrow-x^2+2x+4x-5-4=0\)

\(\Leftrightarrow-x^2+6x-9=0\)

\(\Leftrightarrow x^2-6x+9=0\)

\(\Leftrightarrow\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

\(S=\left\{3\right\}\)

e) \(\sqrt{x^2-2x+1}=\sqrt{x+1}\)

\(\Leftrightarrow x^2-2x+1=x+1\)

\(\Leftrightarrow x^2-2x-x+1-1=0\)

\(\Leftrightarrow x^2-3x=0\)

\(\Leftrightarrow x\left(x-3\right)=0\)

\(\Leftrightarrow x=0\) hoặc \(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

\(S=\left\{0;3\right\}\)

g) \(\sqrt{x^2-9}-\sqrt{x-3}=0\) ( ĐKXĐ: x-3>=0 <=> x>=3)

\(\Leftrightarrow\sqrt{x^2-9}=\sqrt{x-3}\)

\(\Leftrightarrow x^2-9=x-3\)

\(\Leftrightarrow x^2-x-6=0\)

\(\Leftrightarrow x^2-3x+2x-6=0\)

\(\Leftrightarrow\left(x^2+2x\right)-\left(3x+6\right)=0\)

\(\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow x+2=0\) hoặc \(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=-2\) \(\Leftrightarrow x=3\)

\(S=\left\{-2;3\right\}\)

h) \(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}=1\)

\(\Leftrightarrow x-2+x-3-1=0\)

\(\Leftrightarrow2x-6=0\)

\(\Leftrightarrow x=3\)

\(S=\left\{3\right\}\)

i) \(\sqrt{\frac{2x-3}{x-1}}=2\)

\(\Leftrightarrow\frac{2x-3}{x-1}=4\)

\(\Leftrightarrow4\left(x-1\right)=2x-3\)

\(\Leftrightarrow4x-4-2x+3=0\)

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow x=\frac{1}{2}\)

\(S=\left\{\frac{1}{2}\right\}\)

l) \(x+y+12=4\sqrt{x}+6\sqrt{y-1}\)

\(\Leftrightarrow x+y-4\sqrt{x}+12-6\sqrt{y-1}=0\)

\(\Leftrightarrow\left(x-4\sqrt{x}+4\right)+\left(y-1-6\sqrt{y-1}+9\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+\left(\sqrt{y-1}-3\right)^2=0\)

\(\Leftrightarrow\sqrt{x}-2=0\) hoặc \(\Leftrightarrow\sqrt{y-1}-3=0\)

\(\Leftrightarrow\sqrt{x}=2\) \(\Leftrightarrow\sqrt{y-1}=3\)

\(\Leftrightarrow x=4\) \(\Leftrightarrow y-1=9\)

\(\Leftrightarrow y=10\)

KẾT luận : ..............

Tới đây nhé, nếu mai chưa ai giải thì mình giải hộ cho

CHÚC BẠN HỌC TỐT!

21 tháng 8 2019

m) \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8+6\sqrt{x-1}}=5\)

<=> \(\sqrt{\left(x-1\right)-4\sqrt{x-1}+4}+\sqrt{\left(x-1\right)+6\sqrt{x-1}+9}=5\)

<=>\(\sqrt{\left(\sqrt{x-1}+2\right)^2}+\sqrt{\left(\sqrt{x-1}+3\right)^2}=5\)

<=>\(\sqrt{x-1}+2+\sqrt{x-1}+3=5\)

<=> \(2\sqrt{x-1}=0\)

<=> \(\sqrt{x-1}=0\) <=>x=1

Vậy \(S=\left\{1\right\}\)

n) \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\) (*) ( đk \(x\ge\frac{1}{2}\))

<=> \(\left(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}\right)^2=2\)

<=> \(x+\sqrt{2x-1}+x-\sqrt{2x-1}+2\sqrt{x^2-2x+1}=2\)

<=> 2x+\(2\sqrt{\left(x-1\right)^2=2}\)

<=> x+\(\left|x-1\right|=2\)(1)

TH1: \(\frac{1}{2}\le x\le1\)

Từ (1) => x+1-x=2

<=> 1=2(vô lý)

TH2: x>1

Từ (1)=> x+x-1=2

<=> 2x=3<=> \(x=\frac{2}{3}\)(tm pt (*))

Vậy \(S=\left\{\frac{2}{3}\right\}\)

p) \(\sqrt{2x-1}+\sqrt{x-2}=\sqrt{x+1}\) (*) (đk :\(x\ge2\))

Đặt \(\left\{{}\begin{matrix}x-2=a\left(a\ge0\right)\\x+1=b\left(b\ge0\right)\end{matrix}\right.\) =>a+b=2x-1

\(\sqrt{a+b}+\sqrt{a}=\sqrt{b}\)

<=> \(\sqrt{a+b}=\sqrt{b}-\sqrt{a}\)

<=> \(a+b=b-2\sqrt{ab}+a\)

<=> 0=\(-2\sqrt{ab}\)

=> \(\left[{}\begin{matrix}a=0\\b=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\) => x=2 (vì x=-1 không thỏa mãn pt(*))

Vậy \(S=\left\{2\right\}\)

q) \(\sqrt{x-7}+\sqrt{9-x}=x^2-16x+66\)(*) (đk : \(7\le x\le9\))

Với a,b\(\ge0\) có: \(\sqrt{a}+\sqrt{b}\le2\sqrt{\frac{a+b}{2}}\)(tự cm nha) .Dấu "=" xảy ra <=> a=b

Áp dụng bđt trên có:

\(\sqrt{x-7}+\sqrt{9-x}\le2\sqrt{\frac{x-7+9-x}{2}}=2\sqrt{\frac{2}{2}}=2\) (1)

Có x2-16x+66=(x2-16x+64)+2=(x-8)2+2 \(\ge2\) với mọi x (2)

Từ (1),(2) .Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}x-7=9-x\\x-8=0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}2x=16\\x=8\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=8\\x=8\end{matrix}\right.\)<=> x=8( tm pt (*))

Vậy \(S=\left\{8\right\}\)

20 tháng 1 2019

a.

\(\sqrt{4x^2+4x+1}-\sqrt{25x^2+10x+1}=0\)

\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}-\sqrt{\left(5x+1\right)^2}=0\)

\(\Leftrightarrow2x+1-\left(5x+1\right)=0\)

\(\Leftrightarrow-3x=0\Leftrightarrow x=0\)

b.

\(\sqrt{x^4-16x^2+64}=\sqrt{25x^2+10x+1}\)

\(\Leftrightarrow\sqrt{\left(x^2-8\right)^2}=\sqrt{\left(5x+1\right)^2}\)

\(\Leftrightarrow x^2-8=5x+1\)

\(\Leftrightarrow x^2-5x+\dfrac{25}{4}=\dfrac{61}{4}\)

\(\Leftrightarrow\left(x-\dfrac{5}{2}\right)^2=\dfrac{61}{4}\)

............................

tương tự ..

c: \(\Leftrightarrow\sqrt{x-5}\left(\sqrt{x+5}-1\right)=0\)

=>x-5=0 hoặc x+5=1

=>x=-4 hoặc x=5

d: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)

=>2x+3=0 hoặc 2x-3=4

=>x=7/2 hoặc x=-3/2

e: \(\Leftrightarrow\sqrt{x-2}\left(1-3\sqrt{x+2}\right)=0\)

=>x-2=0 hoặc 3 căn x+2=1

=>x=2 hoặc x+2=1/9

=>x=-17/9 hoặc x=2

15 tháng 7 2018

bài 2 rút gọn :

a) \(\sqrt{\left(1-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}-3\right)^2}\)

= \(\left|1-\sqrt{2}\right|+\left|\sqrt{2}-3\right|\)

=\(\sqrt{2}-1+3-\sqrt{2}\)

=2

b) \(\sqrt{4-2\sqrt{3}}+\sqrt{7}-\sqrt{48}\)

= \(\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{7}-4\sqrt{3}\)

= \(\sqrt{3}-1+\sqrt{7}-4\sqrt{3}\)

= \(\sqrt{7}-3\sqrt{3}+1\)

c)

15 tháng 7 2018

Help mee <3

21 tháng 9 2017

aを見つける= 175度はどれくらい尋ねる