Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(6+4=210\)
\(210=\overline{\left(6-4\right)\left(6+4\right)}\)
Tương tự :
\(\overline{\left(9-2\right)\left(9+2\right)}=711\)
\(\overline{\left(8-5\right)\left(8+5\right)}=313\)
...
\(\overline{\left(15-3\right)\left(15+3\right)}=1218\)
6 + 4 = 210
9 + 2 = 711
8 + 5 = 313
5 + 7 \(\ne\)37
7 + 6 = 113
9 + 8 = 117
10 + 6 = 416
15 + 3 = 1218
6 - 4 = 210
9 - 2 = 711
8 - 5 = 313
5 - 3 \(\ne\)37
7 - 6 = 113
9 - 8 = 117
10 - 6 = 416
15 - 3 = 1218
- Đề sai :>
- Quy luật kép nào đó mà giờ tui 'ếu' nhìn thấy được :))
1/
\(P=\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}=\frac{2}{xy+yz+xz}+\frac{1}{xy+yx+xz}+\frac{2}{x^2+y^2+z^2}\)\
\(\ge\frac{2}{\frac{\left(x+y+z\right)^2}{3}}+\frac{\left(2\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=14\)
Ta thấy dấu bằng xảy ra khi \(\hept{\begin{cases}x=y=z=\frac{1}{3}\\\frac{1}{xy+yz+xz}=\frac{\sqrt{2}}{x^2+y^2+z^2}\end{cases}}\)
Hai điều kiện không thể đồng thời xảy ra nên không tồn tại dấu bằng. Vậy P > 14
1) vì x,y,z là các số bất kì, ta có bđt luôn đúng: (x+y+z)2 \(\ge\)3(xy+yz+zx)
vì x+y+z=1 nên suy ra \(\frac{1}{xy+yz+zx}\ge3\)
đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)
ta có \(\frac{1}{3\left(xy+yz+zx\right)}+\frac{1}{x^2+y^2+z^2}\ge\frac{4}{\left(x+y+z\right)^3}=4\)
\(\Rightarrow\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}=\frac{4}{2\left(xy+yz+zx\right)}+\frac{2}{2\left(xy+yz+zx\right)}+\frac{2}{x^2+y^2+z^2}\)\(\ge2\cdot3+2\cdot4=14\)
đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}x=y=z=\frac{1}{3}\\2\left(xy+yz+zx\right)=x^2+y^2+z^2\end{cases}}\)
hệ này vô nghiệm nên bât không trở thành đẳng thức
vậy bất đẳng thức được chứng minh
2) ta có \(\frac{x^3}{y^3+8}+\frac{y+2}{27}+\frac{y^2-2y+4}{27}\ge\frac{x}{3}\Rightarrow\frac{x^3}{y^3+8}\ge\frac{9x+y-y^2-6}{27}\)
tương tự ta có: \(\frac{y^3}{z^3+8}\ge\frac{9y+z-z^2-6}{27},\frac{z^3}{x^3+8}\ge\frac{9z+x-x^2-6}{27}\)nên
\(VT\ge\frac{10\left(x+y+z\right)-\left(x^2+y^2+z^2\right)-18}{27}=\frac{12-\left(x^2+y^2+z^2\right)}{27}\)mà ta lại có
\(\frac{12-\left(x^2+y^2+z^2\right)27}{27}=\frac{3+\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)}{27}=\frac{1}{9}+\frac{2}{27}\left(xy+yz+zx\right)\)
từ đó ta có điều phải chứng minh, đẳng thức xảy ra khi x=y=z=1
a) 3/4x16/9-7/5:(-21/20)
=4/3-(-4/3)
=8/3
b)=7/3-1/3x[-3/2+(2/3+2)]
=7/3-1/3x[-3/2+8/3]
=7/3-1/3x7/6
=7/3-7/18
=35/18
c)=(20+37/4):9/4
=117/4:9/4
=13
d)=6-14/5x25/8-8/5:1/4
=6-35/4-32/5
=-11/4-32/5
=-183/20
\(9+0=9\)
\(7+3=10\)
\(5+5=10\)
\(2+8=10\)
k mk nha mí bn
10 + 5 + 6 + 9 + 8
= 38
mk k pạn òi
k cho mk nha pạn
cảm ơn trước
4+8+9+10+0=34
ai k mình mình k lại cho mình thề đó
3 + 8 + 9 = Three + Eight + Nine = T + E + N = Ten = mười = 10
Thưa cô là đáp án sai