Một người quan sát sóng trên mặt hồ thấy có 5 đỉnh sóng đều đặn
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2016

Ta có \lambda = \frac{9}{f} = 2
Và \frac{- S_1S_2}{\lambda } < k < \frac{ S_1S_2}{\lambda } (k \epsilon N) => có 9 điểm

23 tháng 8 2016

Ta có:
f = 2 f_0 = 100 (Hz)
l = \frac{k\lambda }{2} = \frac{kv}{2 f}\Rightarrow v = \frac{2 l f}{k}  ( vì vật được kích thích bằng nam châm) 
= \frac{2.0,9 .100}{6} = 30 (m/s)

31 tháng 7 2016

Hỏi đáp Vật lý

31 tháng 7 2016

Hỏi đáp Vật lý

1 tháng 6 2016

\(u=2\cos\left(20\pi\left(t-\frac{x}{25}\right)\right)=2\cos\left(20\pi t-\frac{4\pi x}{5}\right)\)
\(\Rightarrow\lambda=\frac{5}{2}\left(m\right)=250\left(cm\right)\)
\(f=\frac{\omega}{2\pi}=\frac{20\pi}{2\pi}=10\left(Hz\right)\)
\(\Rightarrow v=f.\lambda=10.250=2500\left(cm/s\right)=25\left(m/s\right)\)

Đáp án C

11 tháng 9 2015

Bước sóng \(\lambda = v/f = 1/25 = 0.04m = 4cm.\)

Độ lệch pha giữa hai nguồn sóng là \(\triangle\varphi= \varphi_2-\varphi_1 = \frac{5\pi}{6}+\frac{\pi}{6} = \pi.\)

Biên độ sóng tại điểm M là \( A_M = |2a\cos\pi(\frac{10-50}{4}-\frac{\pi}{2\pi})| =0.\)

19 tháng 8 2016

Hai điểm có cùng biên độ 2 mm đối xứng nhau qua nút gần nhất và hai điểm có biên độ 3 mm nằm đồi xứng nhau qua bụng gần nhất. Áp dụng công thức tình biên độ điểm, ta có hệ phương trình:

x = \frac{\lambda }{2}; \left\{\begin{matrix} 2 = A cos \frac{\pi}{x}.5\\ 3 = A sin\frac{\pi}{x}.5\end{matrix}\right.

\rightarrow A^2 = 2^2 + 5^2 \rightarrow A = \sqrt{29}mm \rightarrow x \approx 23 cm

19 tháng 8 2016

Gọi biên độ sóng tại bụng là 2a.

Ta có : \(\frac{1}{a^2}=\frac{9}{4a^2}=1\rightarrow a=\frac{2}{\sqrt{13}}\) 

Xét: \(2a\sin\frac{2\pi x}{\lambda}=2\rightarrow2\lambda=54cm\Rightarrow\lambda=27cm\)

Vậy chọn đáp án A. 

23 tháng 8 2016

Ta có: \frac{2 \pi}{\lambda } = 4
\Rightarrow \lambda = \frac{\pi}{2} (m)
\Rightarrow v = \lambda .f = \frac{20}{2 \pi}\frac{\pi}{2} = 5 (m)

28 tháng 7 2016

Gọi hình chiếu của điểm M trên AB là N, trung điểm của AB là O, đặt ON = x \(\Rightarrow\) \(AM=\sqrt{4+\left(4-x\right)^2}\)\(,BM=\sqrt{4+\left(4+x\right)^2}\)
\(\vartheta BM=\frac{2\pi BM}{\lambda}\)
\(\vartheta AM=\frac{2\pi AM}{\lambda}\)
\(\Rightarrow\frac{2\pi}{\lambda}\left(MB-MA\right)=\left(2k+1\right)\lambda\pi\)
Min khi k = 0 \(\Leftrightarrow\sqrt{4+\left(4+x\right)^2}-\sqrt{4+\left(4-x\right)^2}\)\(=1\Rightarrow x\approx0,56\left(cm\right)\)

chọn đáp án A