Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2^n>2n+1\) (1)
Với n=3 thì (1) <=> \(2^3>2.3+1\) (đúng)
Giả sử (1) đúng đến n=k => \(2^k-2k-1>0\)
Ta có: \(2^{k+1}-2\left(k+1\right)-1=2\left(2^k-2k-1\right)+2k-1>0\) (với \(k>3\))
=> \(2^{k+1}>2\left(k+1\right)+1\) (1) đúng đến n=k+1
Theo quy nạp thì (1) đúng
b) \(2^n\ge n^2\) (2)
Với n=4 thì (2) <=> \(2^4\ge4^2\) (đúng)
Giả sử (2) đúng đến n=k => \(2^k-k^2\ge0\)
Ta có: \(2^{k+1}-\left(k+1\right)^2=2\left(2^k-k^2\right)+\left(k-1\right)^2\ge0\)
=> \(2^{k+1}\ge\left(k+1\right)^2\) => (2) đúng đến n=k+1
Theo nguyên lí quy nạp thì (2) đúng
\(\left(2\right)\Leftrightarrow\left[{}\begin{matrix}x>-1\\x< -3\end{matrix}\right.\)
Xét (1), đặt \(f\left(x\right)=x^2-m\left(m^2+1\right)+m^4\), ta có:
\(\Delta=m^2\left(m^2+1\right)^2-4m^4=m^2\left(m^2-1\right)^2\ge0\) ; \(\forall m\)
Nếu \(\left[{}\begin{matrix}m=0\\m=1\\m=-1\end{matrix}\right.\) \(\Rightarrow\left(1\right)\) vô nghiệm (ktm)
Nếu \(m\ne\left\{0;\pm1\right\}\) \(\Rightarrow\) nghiệm của (1) đều là nghiệm của (2) khi và chỉ khi: \(\left[{}\begin{matrix}x_1< x_2\le-3\\x_2>x_1\ge-1\end{matrix}\right.\)
TH1: \(x_1< x_2\le-3\Leftrightarrow\left\{{}\begin{matrix}f\left(-3\right)\ge0\\\frac{x_1+x_2}{2}< -3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^4+3m^3+3m+9\ge0\\m^3+m< -6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^3+3\right)\left(m+3\right)\ge0\\\left(m^3+3\right)+\left(m+3\right)< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^3+3\le0\\m+3\le0\end{matrix}\right.\) \(\Rightarrow m\le-3\)
TH2:
\(x_2>x_1\ge-1\Leftrightarrow\left\{{}\begin{matrix}f\left(-1\right)\ge0\\\frac{x_1+x_2}{2}>-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^4+m^3+m+1\ge0\\m^3+m>-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(m^3+1\right)\left(m+1\right)\ge0\\\left(m^3+1\right)+\left(m+1\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^3+1\ge0\\m+1\ge0\end{matrix}\right.\) \(\Rightarrow m\ge-1\)
Kết hợp điều kiện delta, ta được đáp án B đúng
bài 1
Cách lớp 8
\(A=2x-3x^2+4=-\left[x^2-2x-4\right]=\dfrac{13}{3}-3\left(x-\dfrac{1}{3}\right)^2\)
\(A\le\dfrac{13}{3}\) khi x=1/3
cách lớp 10
f(x) =-3x^2 +2x+4 đạt giá trị nhỏ nhất tại x=-b/2a =2/(2.(-3)) =-1/3
\(f\left(\dfrac{1}{3}\right)=\dfrac{2}{3}-\dfrac{1}{3}+4=\dfrac{1}{3}+4=\dfrac{13}{3}\)
Max =13/3
\(a=1>0\); \(-\frac{b}{2a}=m+\frac{1}{m}\ge2>1\)
\(\Rightarrow\) Hàm số đã cho nghịch biến trên \(\left[-1;1\right]\)
\(\Rightarrow y_1=\max\limits_{\left[-1;1\right]}f\left(x\right)=f\left(-1\right)=3m+\frac{2}{m}+1\)
\(y_2=f\left(1\right)=-m-\frac{2}{m}+1\)
\(\Rightarrow y_1-y_2=4m+\frac{4}{m}=8\)
\(\Leftrightarrow m^2-2m+1=0\Rightarrow m=1\)
Đáp án: D
Các bước giải bài toán trên đều đúng.