Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình tổng quát \(\Delta\):
\(\dfrac{x-2}{2}=\dfrac{y-3}{1}\)=> x-2y+4=0
a. Vì M \(\in\) \(\Delta\)=> M (2y-4;y)
Theo giả thiết, MA=5 <=> \(\sqrt{(-2y+4)^{2}+(1-y)^{2}}\)=5
<=> \(5y^2-18y-8=0\)
<=>y=4 và y=\(\dfrac{-2}{5}\)
Vậy M1(4;4) và M2(\(\dfrac{-24}{5};\dfrac{-2}{5}\))
b. Gọi I là tọa độ giao điểm của đường thẳng \(\Delta\)với đường thẳng (d): x+y+1=0
Ta có hệ phương trình:
\(\begin{cases} x-2y+4=0\\ x+y+1=0 \end{cases}\)
\(\begin{cases} x=-2\\ y=1 \end{cases}\)
=> I(-2;1) là giao điểm của đường thẳng \(\Delta\)với đường thẳng d
c. Nhận thấy, điểm A\(\notin\)\(\Delta\)
Để AM ngắn nhất <=> M là hình chiếu của A trên đường thẳng \(\Delta\)
Vì M\(\in\Delta\)=> M(2y-4;y)
Ta có: Vectơ chỉ phương của \(\overrightarrow{AM}\)là \(\overrightarrow{u}\)(2;1)
\(\overrightarrow{AM}\) (2y-4;y-1)
Vì A là hình chiếu của A trên \(\Delta\)nên \(\overrightarrow{AM}\)\(\perp\Delta\)
<=> \(\overrightarrow{AM}\)\(\perp\overrightarrow{u}\)
<=> \(\begin{matrix}\overrightarrow{AM}&\overrightarrow{u}\end{matrix}\) =0
<=> 2(2y-4)+(y-1)=0
<=> 5y-9=0
<=> y= \(\dfrac{9}{5}\)
=> B (\(\dfrac{-2}{5}\);\(\dfrac{4}{5}\))
Điều kiện để phương trình đã cho là phương trình đường tròn là:
m − 3 2 2 + 2 m + 1 2 2 − ( 3 m + 10 ) > 0 ⇔ m 2 − 6 m + 9 4 + 4 m 2 + 4 m + 1 4 − 3 m − 10 > 0 ⇔ 5 m 2 − 2 m + 10 4 − 3 m − 10 > 0 ⇔ 5 m 2 − 2 m + 10 − 12 m − 40 > 0 ⇔ 5 m 2 − 14 m − 30 > 0 ⇔ m < 7 − 199 5 m > 7 + 199 5
Với điều kiện trên phương trình đã cho là phương trình đường tròn có tâm I − m − 3 2 ; − 2 m + 1 2
Do tâm I nằm trên đường thẳng ∆: x + 2y + 5 = 0 nên ta có:
− m − 3 2 + 2. − 2 m + 1 2 + 5 = 0 ⇔ − ( m − 3 ) + 2 ( − 2 m − 1 ) + 2.5 = 0 ⇔ − m + 3 − 4 m − 2 + 10 = 0 ⇔ − 5 m + 11 = 0 ⇔ m = 11 5
Kết hợp điều kiện, suy ra không có giá trị nào của m thỏa mãn,
Chú ý. Nhiều học sinh quên điều kiện để phương trình là phương trình của một đường tròn nên dẫn đến kết quả m = 11/5
ĐÁP ÁN D