Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(P\left(x\right)=5x^4-3x^2+3x-1-5x^4+4x^2-x-x^2+2\)
\(=2x+1\)
b,* Thay x = 0 vào biểu thức trên ta có : \(2.0+1=1\)
Vậy nếu x = 0 thì biểu thức nhận giá trị 1
* Thay x = -1 vào biểu thức trên ta có : \(2\left(-1\right)+1=-2+1=-1\)
Vậy nếu x = -1 thì biểu thức nhận giá trị là -1
* Thay x = 1/2 vào biểu thức trên ta có : \(2.\frac{1}{2}+1=1+1=2\)
Vậy nếu x = 1/2 thì biểu thức nhận giá trị là 2
c, Ta có \(P\left(x\right)=0\)hay \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)
Ta có \(P\left(x\right)=1\)hay \(2x+1=1\Leftrightarrow x=0\)
a ) \(A\left(-1\right)=-1+\left(-1\right)^2+\left(-1\right)^3+\left(-1\right)^4+....+\left(-1\right)^{99}+\left(-1\right)^{100}\)
\(=-1+1-1+1-1+1-....-1+1\)
\(=\left(-1+1\right)+\left(-1+1\right)+.....+\left(-1+1\right)\)
\(=0\)
Hay \(x=-1\) là nguyện của A(x) (đpcm )
b ) \(A\left(\frac{1}{2}\right)=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+....+\left(\frac{1}{2}\right)^{100}\)
\(=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{100}}\)
\(2A\left(\frac{1}{2}\right)=1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{99}}\)
\(\Rightarrow2A\left(\frac{1}{2}\right)-A\left(\frac{1}{2}\right)=1-\frac{1}{2^{100}}\)
\(\Rightarrow A\left(\frac{1}{2}\right)=\frac{2^{100}-1}{2^{100}}\)
Tại \(x=\frac{1}{2}\) thì A(x) = \(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+.......+\left(\frac{1}{2}\right)^{100}\)
=> 2A(x) = \(1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+.......+\left(\frac{1}{2}\right)^{99}\)
=> 2A(x) - A(x) =\(1-\left(\frac{1}{2}\right)^{100}\)
=> A(x) = \(1-\left(\frac{1}{2}\right)^{100}\)
y1 và y2 lần lượt bằng 8 và 6
còn x1, x2 lần lượt bằng -4 và -10
tick nhóe!
ahihi
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
Ta có :
\(H=2^{2014}-2^{2013}-2^{2012}-...-2-1\)
\(H=2^{2014}-\left(2^{2013}+2^{2012}+2^{2011}+...+2+1\right)\)
Đặt \(B=2^{2013}+2^{2012}+2^{2011}+...+2+1\)
\(2B=2^{2014}+2^{2013}+2^{2012}+...+2^2+2\)
\(2B-B=\left(2^{2014}+2^{2013}+2^{2012}+...+2^2+2\right)-\left(2^{2013}+2^{2012}+2^{2011}+...+2+1\right)\)
\(B=2^{2014}-1\)
\(\Rightarrow\)\(H=2^{2014}-B=2^{2014}-\left(2^{2014}-1\right)=2^{2014}-2^{2014}+1=1\)
Suy ra :
\(A=2014^H=2014^1=2014\)
Vậy \(A=2014\)
Chúc bạn học tốt ~
+) Ta có :
\(A\left(-1\right)=\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+...+\left(-1\right)^{99}+\left(-1\right)^{100}\)
\(A\left(-1\right)=\left(-1\right)+1+\left(-1\right)+...+\left(-1\right)+1\)
\(A\left(-1\right)=\left(-1-1-...-1\right)+\left(1+1+...+1\right)\)
Do dãy 1; 3; 5; ... ; 99 có \(\frac{99-1}{2}+1=50\) số hạng nên có 50 số \(-1\)
Do dãy 2; 4; 6; ... ; 100 có \(\frac{100-2}{2}+1=50\) số hạng nên có 50 số \(1\)
Suy ra :
\(A\left(-1\right)=50.\left(-1\right)+50.1\)
\(A\left(-1\right)=-50+50\)
\(A\left(-1\right)=0\)
Vậy \(x=-1\) là nghiệm của đa thức \(A\left(x\right)=x+x^2+x^3+...+x^{99}+x^{100}\)
Chúc bạn học tốt ~
Chọn đáp án A