Bài 4 (3,5 điểm): Cho hình chữ nhật CDEF có CD>DE...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔCHD vuông tại H và ΔCDE vuông tại D có

góc HCD chung

=>ΔCHD đồng dạng với ΔCDE

b: Xét ΔHDC vuông tại H và ΔHED vuông tại H có

góc HDC=góc HED

=>ΔHDC đồng dạng với ΔHED

=>HD/HE=HC/HD

=>HD^2=HE*HC

c: Xét ΔCHA vuông tại H và ΔCFE vuông tại F có

góc HCA chung

=>ΔCHA đồng dạng với ΔCFE

=>CH/CF=CA/CE

=>CH/CA=CF/CE

Xét ΔCHF và ΔCAE có

Ch/CA=CF/CE

góc HCF chung

=>ΔCHF đồng dạng với ΔCAE

=>góc CHF=góc CAE

9 tháng 9 2015

1. Hai tam giác BEC và AEF có góc đỉnh E chung và \(\angle EBC=\angle EAF=60^{\circ}\to\Delta BEC\sim\Delta AEF\left(g.g\right).\)
2. Hai tam giác DCF và AEF tương tự câu 1.

3. Từ hai điều trên (hoặc trực tiếp) suy ra \(\Delta BEC\sim\Delta DCF\to=\frac{BE}{DC}=\frac{BC}{DF}\to BE\cdot DF=BC\cdot DC=DB^2.\)
4. Từ 3. suy ra \(\frac{BE}{BD}=\frac{BD}{DF},\angle EBD=BDF=120^{\circ}\to\Delta BDE\sim\Delta DFB\left(c.g.c\right)\)

24 tháng 3 2020

dài lắm nên mình làm tắt

1) (x - 5)^2 + (x + 3)^2 = 2(x - 4)(x + 4) - 5x + 7

<=> x^2 - 10x + 25 + x^2 + 6x + 9 = 2x^2 + 8x - 8x - 32 - 5x + 7

<=> 2x^2 - 4x + 34 = 2x^2 - 5x - 25

<=> -4x + 34 = -5x - 25

<=> x + 34 = -25

<=> x = -25 - 34

<=> x = - 59

2) (x + 3)(x - 2) - 2(x + 1)^2 = (x - 3)^2 - 2x^2 + 4x

<=> x^2 - 2x + 3x - 6 - 2x^2 - 4x - 2 = x^2 - 6x + 9 - 2x^2 + 4x

<=> -x^2 - 3x - 8 = -x^2 - 2x + 9

<=> -3x - 8 = -2x + 9

<=> -x - 8 = 9

<=> -x = 9 + 8

<=> x = -17

3) (x + 1)^3 - (x + 2)(x - 4) = (x - 2)(x^2 + 2x + 4) + 2x^2

<=> x^3 + 2x^3 + x + x^2 + 2x + 1 - x^2 + 4x - 2x + 8 = x^3 + 2x^2 + 4x - 2x^2 - 4x - 8 + 2x^2

<=> 2x^2 + 5x + 9 = 2x^2 - 8

<=> 5x + 9 = -8

<=> 5x = -8 - 9

<=> 5x = -17

<=> x = -17/5

4) (x - 2)^3 + (x - 5)(x + 5) = x(x^2 - 5x) - 7x + 3

<=> x^3 - 4x^2 + 4x - 2x^2 + 8x - 8 + x^2 - 5^2 = x^3 - 5x^2 - 7x + 3

<=> 12x - 33 = -7x + 3

<=> 19x - 33 = 3

<=> 19x = 3 + 33

<=> 19x = 36

<=> x = 36/19

5) (x + 4)(x^2 - 4x + 16) - x(x - 4)^2 = 8(x - 3)(x + 3)

<=> x^3 - 4x^2 + 16x + 4x^2 - 16x + 64 - x^3 + 8x^2 - 16x = 8x^2 - 72

<=> -16x + 64 = -72

<=> -16x = -72 - 64

<=> -16x = -136

<=> x = 136/16 = 17/2

6) 4(x - 1)(x + 2) - 5(x + 7) = (2x + 3)^2 - 5x + 3

<=> 4x^2 + 8x - 4x - 8 - 5x - 35 = 4x^2 + 12x + 9 - 5x + 3

<=> -x - 43 = 7x + 12

<=> -8x - 43 = 12

<=> -8x = 12 + 43

<=> -8x = 55

<=> x = -55/8

7) (x - 1)(x^2 + x + 1) + 3(x - 2)^2 = x(x^2 + 3x - 1)

<=> x^3 + x^2 + x - x^2 - x - 1 + 3x^2 - 12x + 12 = x^3 + 3x^2 - x

<=> 3x^2 - 12x + 11 = 3x^2 - x

<=> -12x + 11 = -x

<=> 11 = -x + 12x

<=> 11 = 11x

<=> x = 1

8) (x + 5)(x - 5) - (x + 3)(x^2 - 3x + 9) = 5 - x(x^2 - x - 2)

<=> x^2 - 25 - x^3 + 3x^2 - 9 - 3x^2 + 9x - 27 = 5 - x^3 + x^2 + 2x

<=> -52 - x^3 = 5 - x^3 + 2x

<=> -52 = 5x + 2x

<=> -5x - 2x = 52

<=> -7x = 52

<=> x = -52/7

9) (x + 2)^2 - 2(x + 3)(x - 4) = 5 - x(x - 3)

<=> x^2 + 4x + 4 - 2x^2 + 8x - 6x + 24 = 5 - x^3 + 3x

<=> 6x + 28 = 5 + 3x

<=> 6x + 28 - 3x = 5

<=> 3x + 28 = 5

<=> 3x = 5 - 28

<=> 3x = -23

<=> x = -23/3

10)  (x + 7)(x - 7) - (x + 2)^2 = 5(x - 2) + (x - 7)

<=> x^2 - 49 - x^2 - 4x - 4 = 5x - 10 + x - 7

<=> -53 - 4x = 6x - 17

<=> -4x = 6x + 36

<=> -4x - 6x = 36

<=> -10x = 36

<=> x = -36/10 = -18/5

28 tháng 9 2019

Lời giải của bạn Thái và Hà chưa hợp lý, còn lời giải của bạn An hợp lý, vì :

  • Hai bạn Thái và Hà phân tích đa thức thành nhân tử chưa triệt để, vì ở lời giải của hai bạn, có nhân tử vẫn phân tích được tiếp.
  • Còn ở bạn An thì phân tích đã hợp lý, vì trong các nhân tử, không có nhân tử nào phân tích được tiếp.