Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\frac{101}{1}+\frac{100}{2}+\frac{99}{3}+...+\frac{1}{101}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\left(\frac{100}{2}+1\right)+\left(\frac{99}{3}+1\right)+...+\left(\frac{1}{101}+1\right)+1}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\frac{102}{2}+\frac{102}{3}+...+\frac{102}{101}+\frac{102}{102}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{102.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}+\frac{1}{102}\right)}\)
\(A=\frac{1}{102}\)
1) \(+2x+3y⋮17\)
\(\Rightarrow26x+39y⋮17\)
\(\Rightarrow\left(9x+5y\right)+17x+34y⋮17\)
Mà \(17x+34y⋮17\)
\(\Rightarrow9x+5y⋮17\)
\(+9x+5y⋮17\)
\(\Rightarrow36x+20y⋮17\)
\(\Rightarrow\left(2x+3y\right)+34x+17y⋮17\)
Mà \(34x+17y⋮17\)
\(\Rightarrow2x+3y⋮17\)
Theo đề \(\Rightarrow\left(\frac{301-x}{103}+1\right)+\left(\frac{302-x}{102}+1\right)=\left(\frac{303-x}{101}+1\right)+\left(\frac{304-x}{100}+1\right)\)
\(\Leftrightarrow\left(\frac{301-x}{103}+1\right)+\left(\frac{302-x}{102}+1\right)-\left(\frac{303-x}{101}+1\right)-\left(\frac{304-x}{100}+1\right)=0\)
Sau khi đã quy đồng các phân số với các số 1, ta có :
\(\frac{301-x+103}{103}+\frac{302-x+102}{102}-\frac{303-x+101}{101}-\frac{304-x+100}{100}=0\)
\(\Rightarrow\frac{404-x}{103}+\frac{404-x}{102}-\frac{404-x}{101}-\frac{404-x}{100}=0\)
\(\Leftrightarrow\left(404-x\right)\times\frac{1}{103}+\left(404-x\right)\times\frac{1}{102}-\left(404-x\right)\times\frac{1}{101}-\left(404-x\right)\times\frac{1}{100}=0\)
\(\Leftrightarrow\left(404-x\right)\times\left(\frac{1}{103}+\frac{1}{102}-\frac{1}{101}-\frac{1}{100}\right)=0\)
Vì \(\frac{1}{103}< \frac{1}{102}< \frac{1}{101}< \frac{1}{100}\Rightarrow\frac{1}{103}+\frac{1}{102}-\frac{1}{101}-\frac{1}{100}\ne0\)
Để \(\left(404-x\right)\times\left(\frac{1}{103}+\frac{1}{102}-\frac{1}{101}-\frac{1}{100}\right)=0\)thì \(404-x=0\)
\(404-x=0\)
\(\Rightarrow x=404\)
Vậy x=404
Phương trình \(\Leftrightarrow\left(\frac{301-x}{103}+1\right)+\left(\frac{302-x}{102}+1\right)=\left(\frac{303-x}{101}+1\right)+\left(\frac{304-x}{100}+1\right)\)
\(\Leftrightarrow\frac{404-x}{103}+\frac{404-x}{102}=\frac{404-x}{101}+\frac{404-x}{100}\)
\(\Leftrightarrow\left(404-x\right)\left(\frac{1}{103}+\frac{1}{102}-\frac{1}{101}-\frac{1}{100}\right)=0\)
\(\Leftrightarrow404-x=0\)vì \(\left(\frac{1}{103}+\frac{1}{102}-\frac{1}{101}-\frac{1}{100}\right)\ne0\)
\(\Leftrightarrow x=404\)
Vậy phương trình có nghiệm x=404
vì : \(\frac{99}{-100}< -1\)và \(\frac{-102}{101}>-1\)
=> \(\frac{99}{-100}>\frac{-102}{101}\)
k nha!
Ta có:
\(\frac{99}{-100}< -1\) ; \(\frac{-102}{101}>-1\)
\(\Rightarrow\frac{99}{-100}< \frac{-102}{101}\)
nha bn