Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) cos14∘=sin76∘;cos87∘=sin3∘.cos14∘=sin76∘;cos87∘=sin3∘..
Vì sin3∘<sin47∘<sin76∘<sin78∘sin3∘<sin47∘<sin76∘<sin78∘ nên
cos78∘<cos76∘<cos47∘<cos3∘cos78∘<cos76∘<cos47∘<cos3∘.
b) cotg25∘=tg65∘;cotg38∘=tg52∘cotg25∘=tg65∘;cotg38∘=tg52∘.
Vì tg52∘<tg62∘<tg65∘<tg73∘tg52∘<tg62∘<tg65∘<tg73∘;
nên cotg38∘<tg62∘<cotg25∘<tg73∘cotg38∘<tg62∘<cotg25∘<tg73∘.
Nhận xét: Để so sánh các tỉ số lượng giác sin và côsin của các góc, ta đưa về so sánh cùng một loại tỉ số lượng giác (ví dụ cùng là sin của các góc). Tương tự như vậy, để so sánh các tỉ số lượng giác tang và côtang của các góc, ta đưa về so sánh cùng một loại tỉ số lượng giác (ví dụ cùng là tang của các góc).
a) cos14∘=sin76∘;cos87∘=sin3∘..
Vì sin3∘<sin47∘<sin76∘<sin78∘ nên
cos78∘<cos76∘<cos47∘<cos3∘.
b) cotg25∘=tg65∘;cotg38∘=tg52∘.
Vì tg52∘<tg62∘<tg65∘<tg73∘;
nên cotg38∘<tg62∘<cotg25∘<tg73∘.
Nhận xét: Để so sánh các tỉ số lượng giác sin và côsin của các góc, ta đưa về so sánh cùng một loại tỉ số lượng giác (ví dụ cùng là sin của các góc). Tương tự như vậy, để so sánh các tỉ số lượng giác tang và côtang của các góc, ta đưa về so sánh cùng một loại tỉ số lượng giác (ví dụ cùng là tang của các góc).
Ta có: \(cos14^o=sin76^o;cos87^o=sin3^o\). Vì \(3^o< 47^o< 76^o< 78^o\) nên \(sin3^o< sin47^o< sin76^o< sin78^o\). Vậy ta có thứ tự xếp sau: \(cos87^o< sin47^o< cos14^o< sin78^o\)
a) Ta có: sin30=cos60, sin50=cos40
Mà cos30 < cos38 < cos40 < cos60 < cos80
Nên cos30 < cos38 < sin50 < sin30 < cos80
b) Ta có: tan75=cot15, tan63=cot27 => cot11 < tan75 < cot20 < tan63 (1)
và: sin49=cos41 => cos30 < sin49 (2)
Lại có: cot11=tan69 > tan49= sin49:cos49 > sin49 (do cos49<1) (3)
Từ (1), (2) và (3) suy ra: cos30 < sin49 < cot11 < tan75 < cot20 < tan63
TA CÓ \(\sin30\)= \(\cos60\)
\(\sin50=\cos40\)
---->> \(\cos30< \cos38< \cos40< \cos60< \cos80\)
------>> \(\cos30< \cos38< \sin50< \sin60< \cos80\)
Cái kia làm tương tự nhoa
Bạn xin 1 cái k
(Gợi ý: Bài này có 2 cách làm. Cách 1 là sử dụng máy tính. Cách 2 là sử dụng tính chất lượng giác của hai góc phụ nhau để đưa về cùng một tỉ số lượng giác rồi so sánh. Cách 2 nhanh hơn.)
a) Ta có:
sin 78 ° = cos 12 ° ; sin 47 ° = cos 43 ° V ì 12 ° < 14 ° < 43 ° < 87 ° n ê n cos 12 ° > cos 14 ° > cos 43 ° > cos 87 ° S u y r a : cos 87 ° < sin 47 ° < cos 14 ° < sin 78 ° b ) T a c ó : c o t g 25 ° = t g 65 ° ; c o t g 38 ° = t g 52 ° . V ậ y : c o t g 38 ° < t g 62 ° < c o t g 25 ° < t g 73 °
a: \(sin17^040'< sin45^030'< sin47^013'< sin55^025'\)
nên \(cos72^020'< cos44^030'< sin47^013'< sin55^025'\)
b: \(=2017\left(sin^223^0+sin^267^0\right)+\left(sin^237^0+sin^253^0\right)\)
=2017+1
=2018
Ta có: sin 78o = cos12o; sin 47o = cos 43o
Vì 12o < 14o < 43o < 87o
nên cos 12o > cos 14o > cos 43o > cos 87o
Suy ra: cos 87o < sin47o < cos14o < sin78o