K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^2\left(x+1\right)-x\left(x+1\right)\\ =\left(x^2-x\right)\left(x+1\right)\\ =x\left(x-1\right)\left(x+1\right)\)

Vậy: Chọn D.

\(x^2+x-6\\ =x^2-2x+3x-6\\ =x\left(x-2\right)+3\left(x-2\right)\\ =\left(x+3\right)\left(x-2\right)\)

Đáp án: B

Ta có: \(x^4+8x\\ =x\left(x^3+8\right)\\ =x\left(x+2\right)\left(x^2-2x+4\right)\)

Vậy: Chọn D

21 tháng 9 2017

a )  

b) 

c) x^5 - x^4 - 1 

= x^5 - x^3 - x² - x^4 + x² + x + x^3 - x - 1 

= x²( x^3 - x - 1 ) - x( x^3 - x - 1 ) + ( x^3 - x - 1 ) 

= ( x² - x + 1)( x^3 - x - 1 )

d) 

\(\left(x+1\right)^2-\left(x-1\right)^2\)

\(\Leftrightarrow\left(x+1-x+1\right)\left(x+1+x-1\right)\)

\(\Leftrightarrow2.2x=4x\)

p/s tham khảo nha

\(a^2-b^2-a+b\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)-\left(a-b\right)\)

\(\Leftrightarrow\left(a-b\right)\left(a+b-1\right)\)

p/s tham khảo

I ) Trắc nghiệm:Câu 1: Kết quả của phép tính (2x-3)(2x+3) bằng :a) \(4x^2+9\)b) \(4x^2-9\)c)\(9x^2+4\)d) \(9x^2-4\)Câu 2:Kết quả phân tích đa thức \(-2x+1+x^2\)thành nhân tử là:a) \(\left(x-1\right)^2\)b) \(\left(x+1^2\right)\)c) \(-\left(x+1\right)^2\)d) \(-\left(x-1\right)^2\)Câu 3: Kết quả phép tính: \(20x^2y^6z^3:5xy^2z^2\)là:a) \(4xy^3z^2\)b) \(4xy^3z^3\)c) \(4xy^4z\)d) \(4x^2y^4z\)Câu 4: Phép chia đa thức \(8x^3-1\) cho đa...
Đọc tiếp

I ) Trắc nghiệm:

Câu 1: Kết quả của phép tính (2x-3)(2x+3) bằng :

a) \(4x^2+9\)

b) \(4x^2-9\)

c)\(9x^2+4\)

d) \(9x^2-4\)

Câu 2:Kết quả phân tích đa thức \(-2x+1+x^2\)thành nhân tử là:

a) \(\left(x-1\right)^2\)

b) \(\left(x+1^2\right)\)

c) \(-\left(x+1\right)^2\)

d) \(-\left(x-1\right)^2\)

Câu 3: Kết quả phép tính: \(20x^2y^6z^3:5xy^2z^2\)là:

a) \(4xy^3z^2\)

b) \(4xy^3z^3\)

c) \(4xy^4z\)

d) \(4x^2y^4z\)

Câu 4: Phép chia đa thức \(8x^3-1\) cho đa thức \(4x^2+2x+1\)có thương là:

a) 2x + 1          b) -2x + 1       c)-2x - 1    d) 2x - 1

Câu 5: Mẫu thức chung của hai phân thức \(\frac{4}{x^2-9}\)và \(\frac{1-x}{x^2+3x}\)là:

a) \(\left(x-9\right)\left(x^2+3x\right)\)

b) \(x\left(x-9\right)\)

c) \(x\left(x+3\right)\left(x-3\right)\)

d) \(\left(x+3\right)\left(x-9\right)\)

Câu 6: Tổng hai phân thức: \(\frac{2x-1}{2x}\)\(\frac{4x+1}{2x}\)là:

a) \(1\)

b) \(\frac{6x-2}{2x}\)

c) \(3\)

d) \(\frac{6x+2}{2x}\)

Câu 7: Kết quả phép chia \(\frac{6x-3}{2x^3y^2}\) : \(\frac{12x-6}{4x^2y^3}\) là:

a) \(\frac{9\left(2x-1\right)^2}{4x^5y^5}\)

b) \(\frac{y}{x}\)

c) \(\frac{-y}{x}\)

d) \(\frac{x}{y}\)

Câu 8: Cho hình vẽ, biết AB//CD và AB= 4,5 cm ; DC= 6,5 cm . Độ dài EF là :

a) 4,5 cm

b) 5 cm

c) 5,5 cm

d) 6,5 cm

 

 

1
11 tháng 12 2018

\(\left(2x-3\right).\left(2x+3\right)=4x^2-9\)

\(20x^2y^6z^3:5xy^2z^2=4xy^4z\)

\(\frac{8x^3-1}{4x^2+2x+1}=\frac{\left(4x^2+2x+1\right).\left(2x-1\right)}{4x^2+2x+1}=2x-1\)

\(\frac{2x-1}{2x}+\frac{4x+1}{2x}=\frac{2x-1+4x+1}{2x}=3\)

5 tháng 10 2016

chủ yếu dạng này là thêm bớt đẻ có hạng tử là x2+x+1 thôi, ko hiểu thì hỏi mình, mình cho cách làm nhé

1 tháng 10 2017

phần c làm thế nào banj

\

6 tháng 9 2020

a) \(x+x^2-x^3-x^4=x\left(1+x-x^2-x^3\right)\)

b) \(\left(x+1\right)^2-x-1=\left(x+1\right)^2-\left(x+1\right)=\left(x+1\right)\left(x+1-1\right)=x\left(x+1\right)\)

c) \(x^2-2x+1-y^2+2y-1=\left(x-1\right)^2-\left(y-1\right)^2=\left(x-1+y-1\right)\left(x-1-y+1\right)\)

\(=\left(x+y-2\right)\left(x-y\right)\)

d) \(3xy-z-3x+yz=3x\left(y-1\right)-x\left(y-1\right)=2x\left(y-1\right)\)

e) \(x^4-1-3\left(x^2+1\right)=\left(x^2-1\right)\left(x^2+1\right)-3\left(x^2+1\right)=\left(x^2+1\right)\left(x^2-1-3\right)\)

\(=\left(x^2+1\right)\left(x^2-4\right)=\left(x^2+1\right)\left(x-2\right)\left(x+2\right)\)

6 tháng 9 2020

a, \(x+x^2-x^3-x^4=-x\left(x+1\right)^2\left(x-1\right)\)

b, \(\left(x+1\right)^2-x-1=x^2+2x+1-x-1=x^2+x=x\left(x+1\right)\)

c, \(x^2-2x+1-y^2+2y-1=\left(x-1\right)^2-\left(y-1\right)^2\)để thế này đc thôi 

d, \(3xy-z-3x+yz=2x\left(y-1\right)\)

e, \(x^4-1-3\left(x^2+1\right)=x^4-1-3x^2-4=\left(x^2+1\right)\left(x-2\right)\left(x+2\right)\)

28 tháng 12 2019

\(x^7+x^2+1\)

\(=x^7+x^6+x^5+x^4+x^3+x^2+x+1\)

\(=x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)

28 tháng 12 2019

a) \(x^7+x^2+1=\left(x^7-x\right)+\left(x^2+x+1\right)\)

\(=x\left(x^6-1\right)+\left(x^2+x+1\right)=x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x\left(x-1\right)\left(x^3+1\right)+1\right]\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)

b) \(x^7+x^5+1=\left(x^7+x^6+x^5\right)-\left(x^6-1\right)\)

\(=x^5\left(x^2+x+1\right)-\left(x^3-1\right)\left(x^3+1\right)\)

\(=x^5\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)\)

\(=\left(x^2+x+1\right)\left[x^5-\left(x-1\right)\left(x^3+1\right)\right]\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)