Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(x^3z+x^2yz-x^2z^2-xyz^2=\left(x^3z-x^2z^2\right)+\left(x^2yz-xyz^2\right)\)
\(=\left(x-z\right)\left(x^2z+xyz\right)\)
\(=xz\left(x-z\right)\left(x+y\right)\)
b ) \(p^{m+2}.q-p^{m+1}q^3-p^2q^{n+1}+pq^{n+3}\)
\(=p^{m+1}q\left(p-q^2\right)-pq^{n+1}\left(p-q^2\right)\)
\(=\left(p-q^2\right)\left(p^{m+1}q-pq^{n+1}\right)\)
\(=pq\left(p-q^2\right)\left(p^m-q^n\right)\)
a.\(\text{\(x^3z+x^2yz-x^2z^2-xyz^2\)}\)
\(=\left(x^3z+x^2yz\right)-\left(x^2z^2+xyz^2\right)=x^2z\left(x+y\right)-xz^2\left(x+y\right)\)
\(=xz\left(x-y\right)\left(x+y\right)\)
\(\text{ }\)
b.gọi biểu thức là P ta có :
\(P=p^{m+1}q\left(p-q^2\right)-pq^{n+1}\left(p-q^2\right)\)
\(P=\left(p-q^2\right)\left(p^{m+1}q-pq^{n+1}\right)=pq\left(p-q^2\right)\left(p^m-q^n\right)\)
Cảm ơn sư phụ đã chỉ bảo :3
Question 1 :
a )\(A=1+2+3+.......+n=\dfrac{1}{2}.n.\left(n+1\right)\)
b ) \(B=1^2+2^2+3^2+......+n^2=\dfrac{1}{6}.n\left(n+1\right)\left(2n+1\right)\)
c ) \(C=1^3+2^3+3^3+......+n^3=\dfrac{1}{4}.n^2.\left(n+1\right)^2\)
Question 2 :
a ) \(199^3-199=199\left(199^2-1\right)=199\left(199-1\right)\left(199+1\right)=198.199.200⋮200\left(đpcm\right)\)
b ) Ta có :
\(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc=3abc\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
Vì \(a,b,c>0\) \(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a=b=c\left(đpcm\right)\)
Wish you study well !!
Bạn nào làm được câu a , t bái bạn đó làm sư phụ :3
bài 1:
a) 4n+4+3n-6<19
<=> 7n-2<19
<=> 7n<21 <=> n< 3
b) n\(^2\) - 6n + 9 - n\(^2\) + 16\(\leq\)43
-6n+25\(\leq\)43
-6n\(\leq\)18
n\(\geq\)-3
1.Để m nguyên thì \(n^2+n+1⋮n+1\)
\(\Leftrightarrow n\left(n+1\right)+1⋮n+1\)
\(\Rightarrow n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow n\in\left\{-2;0\right\}\)
\(\Rightarrow m\in\left\{-3;1\right\}\)
Vậy (m;n)=\(\left(-2;-3\right);\left(0;1\right)\)
2. Khai triển ra rồi nhóm hạng tử bằng cách đặt nhân tử chung.
(Câu trả lời thứ 409).
bài 1 m ở đâu
2.
làm phép chia \(n^3+2n^2+15:n+3\)
ta được kết quả là \(n^2-n+3\) và dư là 6
để \(n^3+2n^2+15⋮n+3\) thì \(6⋮n+3\)
do đó n+3={-6;-3;-2;-1;1;2;3;6}
n+3 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
n | -9 | -6 | -5 | -4 | -2 | -1 | 0 |
3 |
vì \(n\in N\) nên \(n=\left\{0;3\right\}\)
vậy khi n=0 hoặc n=3 thì \(n^3+2n^2+15⋮n+3\)
a) Có \(\dfrac{x^4-x^3+6x^2-x+n}{x^2-x+5}\) được thương là x2 +1 và dư n-5
Vậy để đa thức trên chia hết thì n-5 = 0 => n = 5
b) Có \(\dfrac{3x^3+10x^2-5+n}{3x+1}\) được thương là x2 + 3x -1 và dư -4 +n
Vậy để đa thức trên chia hết thì -4 + n = 0 => n = 4
c) Theo đề bài ta có:
\(\dfrac{2n^2+n-7}{n-2}=2n+5+\dfrac{3}{n-2}\)
Với n nguyên để đa thức trên chia hết thì ( n - 2) phải thuộc ước của 3
Từ đó, ta có:
n-2 | n |
-1 | 1 |
1 | 3 |
-3 | -1 |
3 | 5 |
Vậy khi n đạt những giá trị trên thì đa thức trên sẽ chia hết
1 ) \(a\left(m+n\right)+b\left(m+n\right)\)
\(=\left(a+b\right)\left(m+n\right)\)
2 ) \(a^2\left(x+y\right)-b^2\left(x+y\right)\)
\(=\left(a^2-b^2\right)\left(x+y\right)\)
\(=\left[\left(a-b\right).\left(a+3\right)\right]\left(x+y\right)\)
3 ) \(6a^2-3a+12ab\)
\(=3a.2a-3a+3a.4b\)
\(=3a.\left(2a-1+4b\right)\)
4 ) \(2x^2y^4-2x^4y^2+6x^3y^3\)
\(=2x^2y^2.y^2-2x^2y^2.x^2+2x^2y^2.3xy\)
\(=2x^2y^2\left(y^2-x^2+3xy\right)\)
5 ) \(\left(x+y\right)^3-x\left(x+y\right)^2\)
\(=\left(x+y\right)^2.\left(x+y-x\right)\)
\(=\left(x+y\right)^2.y\)
1)a(m+n)+b(m+n)
=(a+b)(m+n)
2)a2(x+y)-b2(x+y)
=(a2-b2)(x+y)
3)6a2-3a+12ab
=3a.2a-3a.(1-4b)
=3a.(2a-1+4b)
5)(x+y)3-x(x+y)2
=(x+y)(x+y)2-x(x+y)2
=(x+y)2(x+y-x)
4 x 2 + 4 x – y 2 + 1 = ( ( 2 x ) 2 + 2 . 2 x + 1 ) – y 2
= ( 2 x + 1 ) 2 – y 2
= (2x + 1 – y)(2x + 1 + y)
= (2x – y + 1)(2x + y + 1)
Vậy đa thức trong chỗ trống là 2x – y + 1
Đáp án cần chọn là: B