Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi s là quãng đường rơi của giọt nước mưa từ lúc đầu đến điểm cách mặt đất 100 m, t là thời gian rơi trên quãng đường đó, ta có : s = 1/2(g t 2 ) (1)
Mặt khác, quãng đường rơi từ lúc đầu đến mặt đất là s + 100 và thời gian rơi trên quãng đường đó là t + 1 giây.
Ta có : s + 100 = 1/2*g t + 1 2 (2)
Từ hai phương trình (1) và (2) ta rút ra : t = 100/g -0.5 ≈ 9.7(s) ⇒ s = 461(m)
Vậy, độ cao ban đầu của giọt nước mưa lúc bắt đầu rơi là:
s +100 = 561 m.
Gọi s là quãng đường rơi của giọt nước mưa từ lúc đầu đến điểm cách mặt đất 100 m, t là thời gian rơi trên quãng đường đó, ta có : s = 1/2(gt2t2) (1)
Mặt khác, quãng đường rơi từ lúc đầu đến mặt đất là s + 100 và thời gian rơi trên quãng đường đó là t + 1 giây.
Ta có : s + 100 = 1/2*g(t+1)2t+12 (2)
Từ hai phương trình (1) và (2) ta rút ra : t = 100/g -0.5 ≈ 9.7(s) ⇒ s = 461(m)
Vậy, độ cao ban đầu của giọt nước mưa lúc bắt đầu rơi là:
s +100 = 561 m.
Mong mọi người giải với hướng dẫn chi tiết hộ em với ạ . Em làm nhiều lần nhưng vẫn ko ra được đáp án ạ :((((Em cảm ơn !!!
C1: Tóm tắt:
g=10m/s2
s(1s cuối)=2s(1s trước)
s=h(vật được thả)=?m
Giải
Quãng đường tổng cộng vật đi được khi thả ở độ cao ban đầu là:
s1=\(\frac{1}{2}gt^2\)=\(\frac{1}{2}.10.t^2\)=5t2(m)
Quãng đường vật rơi trước một giây cuối là:
s2=\(\frac{1}{2}gt^2\)=\(\frac{1}{2}.10.\left(t-1\right)^2\)=5\(.\left(t-1^{ }\right)^2\)(m)
Quãng đường vật rơi trong một giây cuối cùng là:
\(s_3=s_1-s_2=5t^2-5.\left(t-1\right)^2\left(m\right)\)
Quãng đường vật rơi trước hai giây cuối là:
\(s_4\)=\(\frac{1}{2}gt^2=\frac{1}{2}.10.\left(t-2\right)^2=5\left(t-2\right)^2\left(m\right)\)
Quãng đường vật rơi được trong một giây trước một giây cuối cùng là:
\(s_5=s_2-s_4=5\left(t-1\right)^2-5\left(t-2\right)^2\left(m\right)\)
Theo đề bài cho quãng đường vật rơi trong 1s cuối cùng gấp đôi trong 1s trước đó nên:
s3=2s5↔\(5t^2-5\left(t-1\right)^2=2\left[5\left(t-1\right)^2-5\left(t-2\right)^2\right]\)→t=2,5(s)
Vậy quãng đường tổng cộng vật đi được khi thả ở độ cao ban đầu(vật được thả ở độ cao) là:
s=h=\(\frac{1}{2}gt^2=\frac{1}{2}.10.2,5^2=31,25\left(m\right)\)
1/ Đáp án B
2/
a) Thời gian vật rơi:
\(t=\frac{v}{g}=3\left(s\right)\)
- Độ cao thả vật:
\(h=\frac{1}{2}gt^2=45\left(m\right)\)
b) Quãng đường vật rơi trong giây cuối cùng trước khi chạm đất :
\(\Delta s'=s_3-s_2=25\left(m\right)\)
1.B
2. a) h=\(\dfrac{v^2}{2g}\)=\(\dfrac{30^2}{2.10}\)=45(m)
t=\(\dfrac{v}{g}\)=\(\dfrac{30}{10}\)=3(s)
b) S2s=\(\dfrac{1}{2}\)gt2s2=\(\dfrac{1}{2}\).10.22=20(m)
\(\Delta S\)=S3s-S2s=h-S2s=25(m)
a) gọi vị trí mà thế năng bằng hai lần động năng là A \(\left(W_{t_A}=2W_{đ_A}\right)\)
vị trí ban đầu là O
bảo toàn cơ năng
\(W_O=W_A\Leftrightarrow0+m.g.h=3.W_{t_A}\)
\(\Leftrightarrow h'=\dfrac{25}{3}\)m
b) khi vật rơi được 5m vận tốc lúc đó là (a=g=10m/s2)
\(v^2-v_0^2=2as\)
\(\Rightarrow v=\)10m/s
động năng lúc đó
\(W_đ=\dfrac{1}{2}.m.v^2=75J\)
Chọn chiều dương là chiều chuyển động của giọt nước mưa.
- Áp dụng Định luật II Niu-tơn cho giọt nước
\(F_{hl}=P+F_C\)
Chiếu lên chiều dương, ta có:
\(ma=P-F_C\)
Tại thời điểm \(a=6\left(\frac{m}{s^2}\right);v=12\frac{m}{s}\) ta có
\(m.6=m.10-k.12\rightarrow\frac{m}{k}=3\)
Khi rơi gần mặt đất, do giọt nước chuyển động thẳng đều, ta có:
\(P=F'_C\)
\(\rightarrow m.g=k.v'\)
Thay (1) vào, ta có:\(v'=30\frac{m}{s}\)
: Giọt nước thứ 2 rơi được 2 giây rồi nhỉ, vậy nên nó đi được 20m rồi 20 + 25 là được 45m nhỉ, vậy là giọt nước thì nhất đã rơi được 45m.
----- Lại áp cái công thức quen thuộc h = h0 + v0*t + 1/2 *gt^2 = 45 <=>
--------------------------------------... 5t^2 = 45 ( vì h0 tức là độ cao ban đầu bằng 0 do ta coi gốc tọa độ là nơi bắt đầu thả vật mà, v0 cũng bằng 0 luôn nhá )
--------------------------------------... => t =3s
Kết luận : Giọt nước thứ 2 rơi trễ 1s so với giọt thứ nhất.
- Với câu 1 thì chắc chúa mới trả lời được vì đâu có cho khoảng cách giữa 2 tầng tháp. VD nếu là 5m thì gặp nhau ngay lúc thả vật 2, nhỏ hơn 5m thì nó không bao giờ gặp cho đến khi nằm yên ở mặt đất, trên 5m thì mới phải tính toán.
- Với câu 2 : Giọt nước thứ 2 rơi được 2 giây rồi nhỉ, vậy nên nó đi được 20m rồi 20 + 25 là được 45m nhỉ, vậy là giọt nước thì nhất đã rơi được 45m.
----- Lại áp cái công thức quen thuộc h = h0 + v0*t + 1/2 *gt^2 = 45 <=>
--------------------------------------... 5t^2 = 45 ( vì h0 tức là độ cao ban đầu bằng 0 do ta coi gốc tọa độ là nơi bắt đầu thả vật mà, v0 cũng bằng 0 luôn nhá )
--------------------------------------... => t =3s
Kết luận : Giọt nước thứ 2 rơi trễ 1s so với giọt thứ nhất.