K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2016

▲ABC có chu vi 72cm,trung tuyến AM , đường cao AH , AM-AH=7cm 
Đặt AH=x=>AM=x+7(x>0) 
Ta có : 
BC=2x 
AB.AC=AH.BC=2x(x-7)=2x^2-14x 
AB+AC=72-2x 
AB^2+AB^2=BC^2=4x^2 
=>2AB.AC=(AB+AC)^2-(AB^2+AC^2)=(72-2x)... 
=>AB.AC=2592-144x 
Ta có phương trình : 2x^2-14x=2592-144x 
=>x=16(x>0) 
=>SABC=(AB)/2=144cm2 

15 tháng 6 2016

Ở đây có này bạn: [Toán 9] ==> Vip giúp mình với đi? | Yahoo Hỏi & Đáp

6 tháng 7 2023

Gọi a, b, c, h là độ dài hai cạnh góc vuông, cạnh huyền và đường cao

Có \(c=\sqrt{a^2+b^2},ab=ch\Leftrightarrow h=\dfrac{ab}{c}\)

Có \(\left\{{}\begin{matrix}a+b=70\\c+h=74\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a+b=70\\\sqrt{a^2+b^2}+\dfrac{ab}{\sqrt{a^2+b^2}}=74\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a+b=70\\a^2+b^2+ab=74\sqrt{a^2+b^2}\end{matrix}\right.\)

PT dưới tương đương: \(\left(a+b\right)^2-ab=74\sqrt{\left(a+b\right)^2-2ab}\)

\(\Leftrightarrow ab=1200\)

Suy ra \(\left\{{}\begin{matrix}a+b=70\\ab=1200\end{matrix}\right.\), a và b là hai nghiệm của pt \(x^2-70x+1200=0\)

\(\Leftrightarrow a=30,b=40\)

Vậy độ dài các cạnh góc vuông, cạnh huyền và đường cao là 30, 40, 50, 24.

11 tháng 7 2017

A B C

Gỉa sử \(\Delta ABC\) có \(AB=3AC;\widehat{A}=90^0\)

Khi đó \(S\Delta ABC=\frac{1}{2}.AB.AC=\frac{1}{2}.AB.\frac{1}{3}.AB=24\Rightarrow AB^2=144\Rightarrow AB=12\left(cm\right)\)

\(\Rightarrow AC=4\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+4^2}=4\sqrt{10}\left(cm\right)\) 

11 tháng 7 2017

Gọi cạnh góc vuông nhỏ là x (cm,x>0)

=> cạnh góc vuông lớn là 3x(cm)

Diện tích là 24 \(cm^2\)nên ta có : \(\frac{3x.x}{2}\)= 24 => x=4 (TMĐK)

=> cạnh góc vuông lớn là 12cm

Vậy số đo cạnh huyền là \(4\sqrt{10}\)cm

6 tháng 1 2016

Có ΔABC vuông ở A có AB = 1.875, AC = 2.5 nên dễ tính đc AH = 1.5.

ΔAHM vuông ở H, AH = 1.5, HM = √7/2 nên tính đc AM = 2

6 tháng 1 2016

Có ΔABC vuông ở A có AB = 1.875, AC = 2.5 nên dễ tính đc AH = 1.5.

ΔAHM vuông ở H, AH = 1.5, HM = 7√2 nên tính đc AM = 2

8 tháng 9 2020

Vì BC có độ dài lớn nhất nên đề bài tương đương với: \(\sqrt[3]{BD^2}+\sqrt[3]{EC^2}=\sqrt[3]{BC^2}\)(Định lí Pythagoras đảo)

Lập phương 2 vế: \(BD^2+EC^2+3\sqrt[3]{\left(BD.EC\right)^2}\left(\sqrt[3]{BD^2}+\sqrt[3]{EC^2}\right)=BC^2\)

Ôn lại các hệ thức lượng cho tam giác vuông vì sắp tới mình sẽ dùng 1 chuỗi hệ thức đấy:

+Tam giác AHD vuông tại H, đường cao DH: \(AH^2=AD.AB,BH^2=BD.BA\)

+Tam giác AHC vuông tại H, đường cao EH: \(AH^2=AC.AE,CH^2=CA.CE\)

+Tam giác ABC vuông tại A, đường cao AH: \(AH^2=HB.HC,AH.BC=AB.AC,BC^2=AB^2+AC^2\)

$ ADHE là hình chữ nhật nên AD=HE

$ Tam giác AHE vuông tại H nên \(AH^2=AE^2+HE^2\)

Ok, giờ triển thoi: \(BD^2+EC^2+3\sqrt[3]{\left(BD.EC\right)^2}\left(\sqrt[3]{BD^2}+\sqrt[3]{EC^2}\right)=BC^2\)

\(\Leftrightarrow\left(AB-AD\right)^2+\left(AC-AE\right)^2+3\sqrt[3]{\left(BD.CE\right)^2}.\sqrt[3]{BC^2}=BC^2\)

\(\Leftrightarrow\left(AB^2+AC^2\right)+\left(AD^2+AE^2\right)-2\left(AB.AD+AC.AE\right)+3\sqrt[3]{\left(BD.CE.BC\right)^2}=BC^2\)

\(\Leftrightarrow BC^2+\left(AE^2+HE^2\right)-2\left(AH^2+AH^2\right)+3\sqrt[3]{\left(BD.CE.BC\right)^2}=BC^2\)

\(\Leftrightarrow AH^2-4AH^2-3\sqrt[3]{\left(BD.CE.BC\right)^2}=0\)

\(\Leftrightarrow3\sqrt[3]{\left(BD.CE.BC\right)^2}=3AH^2\)

\(\Leftrightarrow BD.CE.BC=AH^3\)

\(\Leftrightarrow BD.CE.BC.AH=AH^4\)

\(\Leftrightarrow\left(BD.BA\right)\left(CE.CA\right)=AH^4\)

\(\Leftrightarrow BH^2.CH^2=AH^4\Leftrightarrow BH.CH=AH^2\)---> Luôn đúng

Vậy giả thiết đúng.

(Bài dài giải mệt vler !!)