Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(v_{max}=\omega.A=\dfrac{2\pi}{T}.A=\dfrac{2\pi.v}{v.T}.A=\dfrac{2\pi.v}{\lambda}.A\)
Theo giả thiết: \(v_{max}=v\)
\(\Rightarrow \dfrac{2\pi.v}{\lambda}.A=v\)
\(\Rightarrow \lambda = 2\pi.A\)
Đáp án B
+ Tỉ số giữa tốc độ cực đại của các phần tử môi trường và vận tốc truyền sóng là:
Năng lượng của electron ở trạng thái dừng n là \(E_n = -\frac{13,6}{n^2}.(eV)\)
\(hf_1 =\frac{hc}{\lambda_1}= E_3-E_1.(1) \)
\(hf_2 =\frac{hc}{\lambda_2}= E_5-E_2.(2) \)
Chia hai phương trình (1) và (2): \(\frac{\lambda_2}{\lambda_1}= \frac{E_3-E_1}{E_5-E_2}.(3)\)
Mặt khác: \(E_3-E_1 = 13,6.(1-\frac{1}{9}).\)
\(E_5-E_2 = 13,6.(\frac{1}{4}-\frac{1}{25}).\)
Thay vào (3) => \(\frac{\lambda_2}{\lambda_1}= \frac{800}{189}\) hay \(189 \lambda_2 = 800 \lambda_1.\)
\(E=\frac{1}{2}\omega^2A^2\) nên vận tốc truyền sóng không ảnh hưởng.
chọn D
- Từ đồ thị, ta thấy rằng điểm C đang đi qua vị trí cân bằng theo chiều âm:
+ OD = 0,25λ = a.
+ Tại thời điểm t2 khi C đi qua vị trí cân bằng theo chiều âm thì D cũng đi qua vị trí có li độ bằng một nửa biên độ theo chiều âm → D và C lệch pha nhau một góc 30°.
Đáp án A
+ Tốc độ dao động của các phần tử môi trường v max = ωA = 2 π . 3 = 6 π cm / s .
+ Độ lệch pha dao động giữa M và N: ∆ φ = 2 π ∆ x λ = 2 π 7 λ 3 λ = 4 π + 2 π 3 rad .
+ Taị thời điểm t1 điểm M có tốc độ v1 = vmax = 6π cm/s.
→ Biễu diễn các dao động tương ứng trên đường tròn, ta thu được
v N = 1 2 v max = 1 2 . 6 π = 3 π cm / s .
1/ Các đáp án B, C, D chỉ đúng khi các điểm này nằm trên cùng một phương truyền sóng.
\(\rightarrow\) Chọn đáp án A
2/ Khi các sóng truyền từ không khí vào nước thì tần số sóng không đổi còn bước sóng thay đổi sao cho \(f=\frac{v}{\lambda}=\)const .Khi truyền từ không khí vào nước vận tốc của sóng âm tăng nên bước sóng sẽ tăng, vận tốc của sóng ánh sáng giảm nên bước sóng sẽ giảm.
\(\rightarrow\)Chọn đáp án B
a/ Chiết suất của lăng kính đối với tia tím và đỏ tính theo (1) là:
\(n_t=1,7311\text{≈}\sqrt{3};\)\(n_đ=1,4142\text{≈}\sqrt{2}\)
Khi góc lệch của tia tím là cực tiểu thì: \(\iota'_1=\iota_2\Rightarrow r_1=r_2=\frac{A}{2}\)
và \(D_{min}=2\iota_1-A\) hay \(\iota_1=\frac{D_{tmin}+A}{2}\)
áp dụng công thức : \(\sin\iota_1=n\sin r_1\) ta được \(\sin D_{tmin}+A_2=n_t\sin\frac{A}{2}\)
Đối với tia tím \(n_t=\sqrt{3}\) và biết \(A=60^0\), ta được:
\(\sin D_{tmin}+A_2=60^0\Rightarrow D_{tmin}=60^0\)
Góc tới của tia sáng trắng ở mặt AB phải bằng:\(i_t=60^0\)
b/ Tương tự như vậy, muốn cho góc lệch của tia đỏ là cực tiểu thì:
\(\sin\frac{D_{dmin}+A}{2}=n_d\sin\frac{A}{2}\Rightarrow D_{dmin}=30^0\)
và góc tới của tia sáng trắng trên mặt AB là: \(i_đ=45^0\)
Như vậy phải giảm góc tới trên mặt AB một góc là :\(i_t-t_đ=15^0\), tức là phải quay lăng kính quanh cạnh A một góc \(15^0\) ngược chiều kim đồng hồ.
c/Gọi \(r_{0đ}\)và \(r_{0t}\) là các góc giới hạn phản xạ toàn phần của tia đỏ và tia tím ta có:
\(\sin r_{0đ}=\frac{1}{n_d}=\frac{1}{\sqrt{2}}\Rightarrow r_{0đ}=45^0\)
\(\sin r_{0t}=\frac{1}{n_t}=\frac{1}{\sqrt{3}}\)=>r0t < r0đ .Do đó muốn cho không có tia sáng nào ló ra khỏi mặt AC của lăng kính thì phải có: r2 \(\ge\)r0đ \(\Rightarrow r_2\ge15^0\)
Hay \(\sin r_1\ge\sin\left(60^0-45^0\right)=0,2588\)
Biết \(\sin r_{1t}=\frac{\sin\iota}{n_t},\sin r_{1đ}=\frac{\sin\iota}{n_d}\); vì \(n_t\le n_đ\)nên suy ra \(r_{1t}\le\sin r_{1đ}\)(2)
Từ (1) và (2) ta thấy bất đẳng thức (1) được thõa mãn đối với mọi tia sáng, nghĩa là không có tia nào trong chùm sáng trắng ló ra khỏi mặt AC, nếu
\(\sin r_{1đ}\le0,2588\)hay \(\frac{\sin\iota}{n_đ}<0,2588\)
\(\Rightarrow\sin i\le0,2588.n_đ\)\(\Rightarrow\sin\le0,36\) .Suy ra góc tới:\(i\le21^06'\)
Đáp án D