K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2019

Đáp án D

Phương pháp: Sử dung̣ đường tròn lương̣ giác

Cách giải:

Theo bài ra ta có:

 

Thời điểm ban đầu vật ở vị trí (1) có v = v0/2

Khi

vật ở vị trí (2)

Từ hình vẽ xác định được thời điểm vật ở vị trí (2) là 5T/12 = 0,083s

29 tháng 8 2016

Khoảng thời gian giữa 2 lần liên tiếp động ăng bằng thế năng là T/4

\(\Rightarrow \dfrac{T}{4}=\dfrac{\pi}{40}\)

\(\Rightarrow T = \dfrac{\pi}{10}\)

\(\Rightarrow \omega=\dfrac{2\pi}{T}=20(rad/s)\)

Biên độ dao động: \(A=\dfrac{v_{max}}{\omega}=\dfrac{100}{20}=5(cm)\)

Ban đầu, vật qua VTCB theo chiều dương trục toạ độ \(\Rightarrow \varphi=-\dfrac{\pi}{2}\)

Vậy PT dao động là: \(x=5\cos(20.t-\dfrac{\pi}{2})(cm)\)

20 tháng 2 2018

Đáp án C

Giả sử phương trình dao động của vật có dạng :  x   =   A cos ( ω t + φ )

ω   =   a m a x v m a x   =   10 π   rad / s

Biên độ :  A   =   v m a x ω   =   3 10 π   m

Vận tốc của vật : v = x' =  - ω A si n ( 10 πt   +   φ )   =   - 3 sin ( 10 πt     +   φ )   m / s

v 0   =   - 3 sin φ = 1,5 m/s  ⇒ sin φ   =   - 0 , 5   s  và do thế năng đang tăng nên chọn  φ   =   - π 6

Phương trình có hai họ nghiệm  10 πt   -   π 6   =   ± 2 π 3   ±   2 kπ

28 tháng 1 2017

Đáp án C

+   t   =   0 :   v = + v m ax 2 ⇒ x = A 3 2 . Lúc này thế năng đang tăng suy ra x = A 3 2 và vật đi theo chiều dương.

+ thời điểm t :  a = a m ax 2 ⇒ x = − A 2

Vòng tròn đơn vị :

Vị trí của vật ở thời điểm  t   =   0 (M0) và t (Mt) như trên hình vẽ. Dễ dàng tìm được góc quét bằng 150 ° , tương ứng với Δ t = 5 T 12 .

Có 

ω = a m ax v m ax = 10 π ⇒ T = 0 , 2 ( s ) ⇒ Δ t = 0 , 083 ( s )

21 tháng 10 2018

Chọn đáp án D

31 tháng 5 2016

Vận tốc của hai vật sau va chạm:  (M + m)V = mv   

=> V = 0,02\(\sqrt{2}\) (m/s)

Tọa độ ban đầu của hệ hai vật  x0 = \(\frac{\left(M+m-M\right)g}{k}=\frac{mg}{k}\) = 0,04m = 4cm

\(A^2=x_0^2+\frac{V^2}{\omega^2}=x_0^2+\frac{V^2+\left(M+m\right)}{k}=0,0016\Rightarrow A=0,04m=4cm\)

→ B

31 tháng 5 2016

Vận tốc của hai vật sau va chạm:   \(\left(M+m\right)V=mv\)

\(\rightarrow V=0,02\sqrt{2}\left(m\text{ /}s\right)\)

Tọa độ ban đầu của hệ hai vật: \(x_0=\frac{\left(M+m-M\right)g}{k}=\frac{mg}{k}=0,04m=4cm\)

\(A^2=x_0^2+\frac{V^2}{\omega^2}=x_0^2+\frac{V^2\left(M+m\right)}{k}=0,0016\) \(\rightarrow A=0,04m=4cm\)

Đáp án B

5 tháng 12 2019

Đáp án C

9 tháng 10 2018