Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi mắc vào hiệu điện thế một chiều:
\(r=\frac{10}{0,4}=25\Omega\)
Khi mắc vào hiệu điện thế xoay chiều:
\(Z_{cd}=\sqrt{r^2+Z^2_L}=\frac{100}{1}=100\Omega\Rightarrow Z_L=25\sqrt{15}\Omega\)
\(Z_L=\omega L\Rightarrow L=\frac{Z_L}{\omega}=\frac{25\sqrt{15}}{100\pi}=\frac{\sqrt{15}}{4\pi}\left(H\right)\)
tan \(\varphi\)=1=\(\frac{Z_C-Z_L}{R}\Rightarrow\)ZC=R+\(\omega\)L=125
CHỌN A
Cho mình hỏi là sao phi lại bằng 1 vậy. Giải thích mình tí với
Khi C thay đổi mà I không đổi → ZL=\(\frac{ZC1+ZC2}{2}\) → Zc2=20 → C2= \(\frac{5.10^{-4}}{\Pi}\)
\(\frac{5.10^{-4}}{\Pi}=\frac{10^{-3}}{2\Pi}\) haha ,đi thi mà cho kiểu đáp án lừa nhau thế thì cg vui đấy ..
R mắc vào cuộn dây(L,r)
TH1: Mắc hiệu điện thế không đổi U vào mạch thì cuộn dây có ZL không cản trở dòng điện chỉ có r và R là cản trở.
=> U = I(R+r)=> R+r = \(\frac{24}{0.6}=40\Omega\rightarrow R+r=40\)
=> \(r=40-30=10\Omega.\)
TH2: Mắc vào hiệu điện thế xoay chiều thì cuộn cảm có ZL có cản trở dòng điện
\(\cos\varphi=\frac{R+r}{Z}=\frac{\sqrt{2}}{2}.\)
=> \(Z=\frac{2}{\sqrt{2}}.40=40\sqrt{2}\Omega.\)
Mà \(Z^2=\left(R+r\right)^2+Z_L^2\Rightarrow Z_L^2=1600\Rightarrow Z_L=40\Omega.\)
=> \(L=\frac{Z_L}{\omega}=\frac{40}{15}=\frac{8}{3}H.\)
vậy r = 10 om và L = 8/3 H.
Ta lấy \(U_R=1\)
\(\Rightarrow U_L=2\), \(U_C=1\)
\(\tan\varphi=\frac{U_L-U_C}{U_R}=\frac{2-1}{1}=1\)
\(\Rightarrow\varphi=\frac{\pi}{4}\)
Vậy u sớm pha hơn i là \(\frac{\pi}{4}\), hay i trễ pha với u là \(\frac{\pi}{4}\)
Ta áp dụng điều kiện vuông pha với 2 đoạn mạch u1 và u2.
Khi đó: \(\tan\varphi_1.\tan\varphi_2=-1\)
\(\Leftrightarrow\frac{Z_L}{R}.\frac{Z_L-Z_C}{R}=-1\)
\(\Leftrightarrow R^2=Z_L\left(Z_C-Z_L\right)\)
Vecto của hiệu điện thế hai đầu mạch bằng tổng hai vecto hiệu điện thế của động cơ điện và cuộn dây
Vẽ giản đồ vecto ta có thể tổng hợp và tính độ lớn của hiệu điện thế hai đầu mạch
Dùng phép chiếu tính các giá trị theo thành phần thẳng đứng và nằm ngang
\(U_x=U\cos15+2U\cos75\)
\(U_y=U\sin15+2U\sin75\)
\(U=\sqrt{U^2_x+U^2_y}=U\sqrt{7}\)
Giải thích: Đáp án A
Theo bài ra ta có