K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2019

Đáp án D

Phương pháp:

Áp dụng công thức độc lập giữa gia tốc và vận tốc trong dao động điều hòa để tính biên độ dao động

Áp dụng công thức tính cơ năng của con lắc lò xo

Cách giải:

Ta có:  

=> Cơ năng của con lắc: 

7 tháng 5 2017

Đáp án C

24 tháng 11 2018

Chọn đáp án C 

23 tháng 9 2018

Đáp án C

Cơ năng của con lắc là :  E   =   1 2 m ω 2 A 2   =   1 2 0 , 5 . 10 2 . 0 , 02 2   =   0 , 01   J

2 tháng 6 2018

 

Chọn C

8 tháng 8 2016

Vẽ vòng tròn ta ta có thể thấy được vị trí góc pha mà thế năng bằng động năng là

\(\varphi=\left(2k+1\right)\frac{\pi}{4}\)

Cứ sau góc \(\frac{\pi}{2}\) thì thế năng bằng động năng tương ứng với T/4

hu kỳ dao động là T = 0.2s suy ra \(\omega=10\pi\)

\(k=\omega^2m=\frac{50N}{m}\)

27 tháng 10 2015

Cơ năng: \(W=0,064+0,096=0,16J\) \(\Rightarrow v_{max}=\sqrt{3,2}\)(m/s)

+ Thời điểm t1: \(v_1=\sqrt{1,92}\)(m/s)

+ Thời điểm t2: \(v_2=\sqrt{1,28}\)(m/s)

Biểu diễn sự biến thiên vận tốc bằng véc tơ quay ta có: 

√3,2 √1,28 √1,92 v O M N

Do \(v_1^2+v_2^2=v_{max}^2\) nên OM vuông góc ON.

Như vậy góc quay là \(90^0\)

Thời gian: \(t=\frac{1}{4}T=\frac{\pi}{48}\Rightarrow T=\frac{\pi}{12}\)

\(\Rightarrow\omega=24\)(rad/s)

Biên độ: \(A=\frac{v_{max}}{\omega}=\frac{\sqrt{3,2}}{24}=0,07m=7cm\)

23 tháng 10 2015

tại t_2 ta có

W_đ/W_t = 1 --> x=A/\eqrt{2}

W_đ = W_t -->W= 2 W_đ =0.128

tại t=0 W_t = W-W_đ =0.032 -->W_đ /W_t =3 hay  x =+-A/2

w= 20 rad/s W=1/2w^2*m*A^2 --->A=8

t/12+T/8 =5T/24=\pi/48 -->T=0.1\pi

15 tháng 7 2016

Chọn trục toạ độ có gốc ở VTCB, chiều dương hướng sang phải.

Phương trình dao động tổng quát là: \(x=A\cos(\omega t+\varphi)\)

Theo thứ tự, ta lần lượt tìm \(\omega;A;\varphi\)

\(\omega=\sqrt{\dfrac{k}{m}}=20\sqrt 2(rad/s)\)

+ Biên độ A: \(A^2=x^2+\dfrac{v^2}{\omega^2}=3^2+\dfrac{(80\sqrt 2)^2}{(20\sqrt 2)^2}\)

\(\Rightarrow A = 5cm\)

+ Ban đầu ta có \(x_0=3cm\)\(v_0=-80\sqrt 2\) (cm/s) (do ta đẩy quả cầu về VTCB ngược chiều dương trục toạ độ)

\(\cos\varphi=\dfrac{x_0}{A}=\dfrac{3}{5}\); có \(v_0<0 \) nên \(\varphi > 0\)

\(\Rightarrow \varphi \approx0,3\pi(rad)\)

Vậy PT dao động: \(x=5\cos(20\sqrt 2+0,3\pi)(cm)\)