K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2017

Đáp án B

Phương pháp : Sử dụng công thức tính biên đô ̣của dao động tổng hợp

Lực hồi phục cực đại: Fmax = mω2A

Cách giải :

Từ giả thuyết:

 

Hai dao động này vuông pha với các biên độ thành phần A1 = 0,8cm, A2 = 0,6cm

Biên độ dao động tổng hợp: 

Mặt khác: 

21 tháng 2 2017

Đáp án A

Dựa vào pt đề bài cho, ta tìm được  x 1 m ax = 1 , 5 ( c m ) x 2 m ax = 2 ( c m ) ⇒ A 1 = 1 , 5 ( c m ) A 2 = 2 ( c m )

Mặt khác, khi x1 max thì x 2   =   0   và ngược lại nên 2 dao động này vuông pha nhau. Dễ dàng tìm được biên độ dao động tổng hợp  A = A 1 2 + A 2 2 = 2 , 5 ( c m )

Lực kéo về cực đại  F k v m ax = k A = m ω 2 A = 0 , 75 ( N )

15 tháng 6 2016

Hỏi đáp Vật lýchọn A

23 tháng 8 2018

Đáp án A 

Lực kéo về cực đại tác dụng lên chất điểm trong quá trình dao động là :

F k v m a x   =   k A   =   m ω 2 A   =   0 , 3 . 10 2 . 0 , 025     =   0 , 75   N

1 tháng 10 2015

Áp dụng công thức: \(A^2 = x^2 +\frac{v^2}{\omega^2} \) \(\Rightarrow A^2 = 3^2 +\frac{(60\sqrt3)^2}{\omega^2} = (3\sqrt2)^2 +\frac{(60\sqrt2)^2}{\omega^2} \)

Giải hệ trên ta được \(\omega = 20rad/s; \ A =6cm\)

30 tháng 5 2017

dap an c


31 tháng 5 2017

Làm tương tự bài này Câu hỏi của Nguyễn Lê Quỳnh Anh - Vật lý lớp 12 | Học trực tuyến

11 tháng 4 2017

Áp dụng công thức (5.1 và 5.2 - SGK) ta tìm được:

A = 2,3 cm và φ = 0,73π

Phương trình dao động tổng hợp là: x = 2,3cos(5πt + 0,73π) (cm).


23 tháng 8 2016

Ta có \lambda = \frac{9}{f} = 2
Và \frac{- S_1S_2}{\lambda } < k < \frac{ S_1S_2}{\lambda } (k \epsilon N) => có 9 điểm

20 tháng 7 2016

\(\omega_1=\frac{2\pi}{T_1}=\frac{10\pi}{3}\)\(\omega_2=\frac{2\pi}{T_2}=\frac{10\pi}{9}\)
\(\varphi_2=\omega_2t;\omega_1t=\pi-\varphi_2\)

\(\Rightarrow t=\frac{\pi}{\omega_1+\omega_2}=0,225\left(s\right)\)

Bài 3: Một con lắc đơn có chiều dài dây treo 1 m, dao động điều hòa tại nơi có gia tốc trọng trường g π2 m/s2.Số lần động năng bằng thế năng trong khoảng thời gian 4 s là A. 16. B. 6. C. 4. D. 8.Bài 4: Một vật dao động điều hoà theo phương trình x = 2cos(5πt -π/3) (cm) (t đo bằng giây).Trong khoảng thời gian từ t = 1 (s) đến t = 2 (s) vật đi qua vị trí x = 0 cm được mấy lần? A. 6 lần. B. 5 lần. C. 4...
Đọc tiếp

Bài 3: Một con lắc đơn có chiều dài dây treo 1 m, dao động điều hòa tại nơi có gia tốc trọng trường g π2 m/s2.

Số lần động năng bằng thế năng trong khoảng thời gian 4 s là A. 16. B. 6. C. 4. D. 8.

Bài 4: Một vật dao động điều hoà theo phương trình x = 2cos(5πt -π/3) (cm) (t đo bằng giây).

Trong khoảng thời gian từ t = 1 (s) đến t = 2 (s) vật đi qua vị trí x = 0 cm được mấy lần? A. 6 lần. B. 5 lần. C. 4 lần. D. 7 lần. Bài 5: Một chất điểm dao động điều hòa theo phương trình x = Acos(2πt/T + π/4) (cm). Trong khoảng thời gian 2,5T đầu tiên từ thời điểm t = 0, chất điểm đi qua vị trí có li độ x = 2A/3 là A. 9 lần. B. 6 lần. C. 4 lần. D. 5 lần.

Bài 6: Một chất điểm dao động điều hoà có vận tốc bằng không tại hai thời điểm liên tiếp là t1 = 2,2 (s) và t2 = 2,9 (s). Tính từ thời điểm ban đầu (to = 0 s) đến thời điểm t2 chất điểm đã đi qua vị trí cân bằng A. 9 lần. B. 6 lần. C. 4 lần. D. 5 lần

. Bài 7: Một vật dao động điều hoà theo phương trình: x = 2cos(5πt - π/3) (cm). Trong giây đầu tiên kể từ lúc bắt đầu dao động vật đi qua vị trí có li độ x = -1 cm theo chiều dương được mấy lần? A. 2 lần. B. 3 lần. C. 4 lần. D. 5 lần.

Bài 8: Một chất điểm dao động điều hoà tuân theo quy luật: x = 5cos(5πt - π/3) (cm). Trong khoảng thời gian t = 2,75T (T là chu kì dao động) chất điểm đi qua vị trí cân bằng của nó A. 3 lần. B. 4 lần. C. 5 lần. D. 6 lần.

Bài 9: Một chất điểm dao động điều hòa với phương trình: x = 4cos(4πt + π/3) (cm). Trong thời gian 1,25 s tính từ thời điểm t = 0, vật đi qua vị trí có li độ x = -1 cm A. 3 lần.                B. 4 lần.                 C. 5 lần.                 D. 6 lần. Bài 10: Chất điểm dao động điều hòa với phương trình: x = Acos(2πt/T + π/4) (cm). Trong thời gian 2,5T kể từ thời điểm t = 0, số lần vật đi qua li độ x = 2A/3 làπ A. 6 lần. B. 4 lần. C. 5 lần. D. 9 lần. 

0