\(lim_{x\rightarrow0}\left(\dfrac{1}{x}-\dfrac{1}{x^2}\right)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2023

\(\lim\limits_{x\rightarrow0}\left(\dfrac{1}{x}-\dfrac{1}{x^2}\right)\)

\(=\lim\limits_{x\rightarrow0}\dfrac{x-1}{x^2}\)

\(=-\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow0}x-1=0-1=-1< 0\\\lim\limits_{x\rightarrow0}x^2=0^2=0\end{matrix}\right.\)

NV
25 tháng 2 2020

Đáp án A

Đó là nguyên lý của giới hạn kẹp

\(\left|f\left(x\right)\right|\le\left|x\right|\Rightarrow\lim\limits_{x\rightarrow0}f\left(x\right)=\lim\limits_{x\rightarrow0}x=0\)

AH
Akai Haruma
Giáo viên
14 tháng 5 2021

1.

\(\lim\limits_{x\to (-1)-}\frac{\sqrt{x^2-3x-4}}{1-x^2}=\lim\limits_{x\to (-1)-}\frac{\sqrt{(x+1)(x-4)}}{(1-x)(1+x)}\)

\(=\lim\limits_{x\to (-1)-}\frac{\sqrt{4-x}}{(x-1)\sqrt{-(x+1)}}=-\infty\) do:

\(\lim\limits_{x\to (-1)-}\frac{\sqrt{4-x}}{x-1}=\frac{-\sqrt{5}}{2}<0\) và \(\lim\limits_{x\to (-1)-}\frac{1}{\sqrt{-(x+1)}}=+\infty\)

 

AH
Akai Haruma
Giáo viên
14 tháng 5 2021

2.

\(\lim\limits_{x\to 2+}\left(\frac{1}{x-2}-\frac{x+1}{\sqrt{x+2}-2}\right)=\lim\limits_{x\to 2+}\frac{1-(x+1)(\sqrt{x+2}+2)}{x-2}=-\infty\) do:

\(\lim\limits_{x\to 2+}\frac{1}{x-2}=+\infty\) và \(\lim\limits_{x\to 2+}[1-(x+1)(\sqrt{x+2}+2)]=-11<0\)

 

NV
24 tháng 1 2019

\(\lim\limits_{x\rightarrow1}\dfrac{x^3-3x+2}{x^4-4x+3}=\lim\limits_{x\rightarrow1}\dfrac{\left(x+2\right)\left(x-1\right)^2}{\left(x^2+2x+3\right)\left(x-1\right)^2}=\lim\limits_{x\rightarrow1}\dfrac{x+2}{x^2+2x+3}=\dfrac{1}{2}\)

\(\lim\limits_{x\rightarrow2^-}\dfrac{x^3+x^2-4x-4}{x^2-4x+4}=\lim\limits_{x\rightarrow2^-}\dfrac{\left(x-2\right)\left(x^2+3x+2\right)}{\left(x-2\right)^2}=\lim\limits_{x\rightarrow2^-}\dfrac{x^2+3x+2}{x-2}=-\infty\)

\(\lim\limits_{x\rightarrow2}\dfrac{\left(x^2-x-2\right)^{20}}{\left(x^3-12x+16\right)^{10}}=\lim\limits_{x\rightarrow2}\dfrac{\left(x+1\right)^{20}\left(x-2\right)^{20}}{\left(x+4\right)^{10}\left(x-2\right)^{20}}=\lim\limits_{x\rightarrow2}\dfrac{\left(x+1\right)^{20}}{\left(x+4\right)^{10}}=\dfrac{3^{10}}{2^{10}}\)

\(\lim\limits_{x\rightarrow0^-}\dfrac{4x^2+5x}{x^2}=\lim\limits_{x\rightarrow0^-}\dfrac{4x+5}{x}=-\infty\)

\(\lim\limits_{x\rightarrow-1}\dfrac{\sqrt{x+2}-1}{\sqrt{x+5}-2}=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(\sqrt{x+5}+2\right)}{\left(x+1\right)\left(\sqrt{x+2}+1\right)}=\lim\limits_{x\rightarrow-1}\dfrac{\sqrt{x+5}+2}{\sqrt{x+2}+1}=2\)

24 tháng 5 2021

\(lim_{x\rightarrow0+}\frac{\left(1+x\right)^n-1}{x}\)   

\(=lim_{x\rightarrow0+}\frac{\left(1+x\right)^n-1^n}{x}\)   

\(=lim_{x\rightarrow0+}\frac{\left(1+x-1\right)\left[\left(1+x\right)^{n-1}+\left(1+x\right)^{n-2}+...+\left(1+x\right)^0\right]}{x}\)   

\(=lim_{x\rightarrow0}\left[\left(1+x\right)^{n-1}+\left(1+x\right)^{n-2}+...\left(1+x\right)^0\right]\)    

\(=1^{n-1}+1^{n-2}+...+1^0\) 

Số số hạng 

\(\left(n-1-0\right):1+1=n\)   

Do mọi số hạng đều bằng 1 nên tổng là 

\(1\cdot n=n\)