\(\left(x+1\right)\sqrt{x^2-2x+3}=2x^2+2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

Do \(2x^2+2>0;\sqrt{x^2-2x+3}>0\)

=> \(x+1>0\)

Áp dụng cosi cho vế trái ta có:

\(\left(x+1\right)\sqrt{x^2-2x+3}\le\frac{1}{2}\left(x^2+2x+1+x^2-2x+3\right)=x^2+2\le2x^2+2=VP\)

Dấu bằng xảy ra khi \(\hept{\begin{cases}x+1=\sqrt{x^2-2x+3}\\x=0\end{cases}}\)(vô nghiệm)

=> PT vô nghiệm 

Vậy PT vô nghiệm

9 tháng 8 2019

\(\text{COSI CẦN SỐ KHÔNG ÂM MÀ}\)

20 tháng 7 2016

từ dòng cuối là sai rồi bạn à

Bạn bỏ dòng cuối đi còn lại đúng rồi

Ở tử đặt nhân tử chung căn x chung  rồi lại đặt căn x +1 chung

Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra 

rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)

 

21 tháng 7 2016

cảm ơn bạn nha ok

3 tháng 12 2017

Ta có \(a,\sqrt{9(x-1)}=21 \)

<=> \(3\sqrt{x-1}=21 \)

<=> \(\sqrt{x-1}=7 \)

<=>\(x-1=49\)

<=>x=50

b, \(\sqrt{4(x-1)^2}-6=0 \)

<=>\(2|x-1|-6=0\)

<=>\(|x-1|=3\)

<=>x=4 hoặc x=-2

c,\(\sqrt{(x-5)^2}=8 \)

<=>|x-5|=8

<=>x=-3 hoặc x=13

d,\(\sqrt{(2x-1)^2}=3 \)

<=>|2x-1|=3

=> x=2 hoặc x=-1

e, \(\sqrt{(2x+3)^2}=3 \)

<=>|2x+3|=3

=>x=0 hoặc x=-3

f, \(\sqrt{x^2-4x+4}=2x-3 \)

<=>\(\sqrt{(x-2)^2}=2x-3 \)

<=>|x-2|=2x-3

Với x-2=2x-3

=>x-1=0

<=>x=1

Với 2-x=2x-3

=>x=\(\frac{5}{3}\)

8 tháng 1 2018

giải bài nào hộ mk cx được ko cần lm hết đâu :) :) :)