Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ dòng cuối là sai rồi bạn à
Bạn bỏ dòng cuối đi còn lại đúng rồi
Ở tử đặt nhân tử chung căn x chung rồi lại đặt căn x +1 chung
Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra
rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
Ta có \(a,\sqrt{9(x-1)}=21 \)
<=> \(3\sqrt{x-1}=21 \)
<=> \(\sqrt{x-1}=7 \)
<=>\(x-1=49\)
<=>x=50
b, \(\sqrt{4(x-1)^2}-6=0 \)
<=>\(2|x-1|-6=0\)
<=>\(|x-1|=3\)
<=>x=4 hoặc x=-2
c,\(\sqrt{(x-5)^2}=8 \)
<=>|x-5|=8
<=>x=-3 hoặc x=13
d,\(\sqrt{(2x-1)^2}=3 \)
<=>|2x-1|=3
=> x=2 hoặc x=-1
e, \(\sqrt{(2x+3)^2}=3 \)
<=>|2x+3|=3
=>x=0 hoặc x=-3
f, \(\sqrt{x^2-4x+4}=2x-3 \)
<=>\(\sqrt{(x-2)^2}=2x-3 \)
<=>|x-2|=2x-3
Với x-2=2x-3
=>x-1=0
<=>x=1
Với 2-x=2x-3
=>x=\(\frac{5}{3}\)
f) ĐKXĐ: \(x\ge-\frac{3}{2}\)
Khi đó VT > 0 nên \(VT>0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-3\left(L\right)\end{matrix}\right.\)
Lũy thừa 6 cả 2 vế lên PT tương đương:
\( \left( x-3 \right) \left( {x}^{11}+9\,{x}^{10}+6\,{x}^{9}-142\,{x}^{ 8}-231\,{x}^{7}+1113\,{x}^{6}+2080\,{x}^{5}-4604\,{x}^{4}-6908\,{x}^{3 }+13222\,{x}^{2}+10983\,x-15327 \right) =0\)
Cái ngoặc to vô nghiệm vì nó tương đương:
\(\left( x-2 \right) ^{11}+31\, \left( x-2 \right) ^{10}+406\, \left( x -2 \right) ^{9}+2906\, \left( x-2 \right) ^{8}+12281\, \left( x-2 \right) ^{7}+31031\, \left( x-2 \right) ^{6}+46656\, \left( x-2 \right) ^{5}+46648\, \left( x-2 \right) ^{4}+46452\, \left( x-2 \right) ^{3}+44590\, \left( x-2 \right) ^{2}+36015\,x-55223 = 0\)(vô nghiệm với mọi \(x\ge2\))
Vậy x = 3.
PS: Nghiệm đẹp thế này chắc có cách AM-Gm độc đáo nhưng mình chưa nghĩ ra
@Akai Haruma, @Nguyễn Việt Lâm
giúp em vs ạ! Cần gấp ạ
em cảm ơn nhiều!
ĐK: \(x+1\ge0\Leftrightarrow x\ge-1\)
Với x=0 không là nghiệm của pt.
Với \(x\ne0\), nhân 2 vế với \(\sqrt{x+1}-1\ne0\)ta được: \(x\left(5-x\right)=2x\left(\sqrt{x+1}-1\right)\)
\(\Leftrightarrow2\sqrt{x+1}=7-x\Leftrightarrow\hept{\begin{cases}7-x\ge0\\4\left(x+1\right)=\left(7-x\right)^2\end{cases}\Leftrightarrow\hept{\begin{cases}x\le7\\x^2-18x+45=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\le7\\\orbr{\begin{cases}x=3\left(tm\right)\\x=15\end{cases}}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}x\le7\\x^2-18x+45=0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le7\\\orbr{\begin{cases}x=3\\x=15\end{cases}}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}x\le7\\x^2-18x+45=0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le7\\\orbr{\begin{cases}x=3\left(tm\right)\\x=15\end{cases}}\end{cases}}}\)
\(\Leftrightarrow2\sqrt{x+1}=7-x\Leftrightarrow\hept{\begin{cases}7-x\ge0\\4\left(x+1\right)=\left(7-x\right)^2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\le7\\x^2-18x+45=0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le7\\\orbr{\begin{cases}x=3\left(tm\right)\\x=15\end{cases}}\end{cases}}}\)