\(\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right).x=1\)

Tính giùm...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2017

\(\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)x=1\)

\(\Rightarrow\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)x=1\)

\(\Rightarrow\left(\dfrac{1}{2}-\dfrac{1}{50}\right)x=1\)

\(\Rightarrow\dfrac{12}{25}x=1\)

\(\Rightarrow x=\dfrac{25}{12}\)

Vậy \(x=\dfrac{25}{12}\)

17 tháng 5 2017

\(\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right).x=1\)

Ta có: \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(=\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{50-49}{49.50}\)

\(=\dfrac{3}{2.3}-\dfrac{2}{2.3}+\dfrac{4}{3.4}-\dfrac{3}{3.4}+...+\dfrac{50}{49.50}-\dfrac{49}{49.50}\)

\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=\dfrac{1}{2}-\dfrac{1}{50}=\dfrac{12}{25}\)

\(\Rightarrow\dfrac{12}{25}.x=1\Rightarrow x=1:\dfrac{12}{25}=\dfrac{25}{12}=2\dfrac{1}{12}\)

Vậy \(x=\dfrac{25}{12}\) hay \(x=2\dfrac{1}{12}\)

27 tháng 4 2018

a)

\(\dfrac{1}{2\cdot3}x+\dfrac{1}{3\cdot4}x+...+\dfrac{1}{49\cdot50}x=1\\ x\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=1\\ x\left(\dfrac{1}{2}-\dfrac{1}{50}\right)=1\\ x\cdot\dfrac{12}{25}=1\\ x=1:\dfrac{12}{25}=1\cdot\dfrac{25}{12}=\dfrac{25}{12}\)

1. So sánh: a. \(\dfrac{-18}{38}\) và \(\dfrac{-32}{68}\) b. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\) với 1. 2. Tìm X, biết: a. \(-\dfrac{11}{12}\)x + \(\dfrac{3}{4}\)= \(-\dfrac{1}{6}\) b. x - 43= (57-x) - 50 c. 2x-(21.3.105-105.61)= -11.26 d. \(\left|x+1\right|\)=3 e. \(\left|2x+3\right|\)=5 3. Tính: a. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009} \) b. \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\) c....
Đọc tiếp

1. So sánh: a. \(\dfrac{-18}{38}\)\(\dfrac{-32}{68}\)

b. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\) với 1.

2. Tìm X, biết:

a. \(-\dfrac{11}{12}\)x + \(\dfrac{3}{4}\)= \(-\dfrac{1}{6}\)

b. x - 43= (57-x) - 50

c. 2x-(21.3.105-105.61)= -11.26

d. \(\left|x+1\right|\)=3

e. \(\left|2x+3\right|\)=5

3. Tính:

a. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009} \)

b. \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

c. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)

4. Chu vi của một sân hình chữ nhật là 48m. Biết chiều dài của sân bằng 140% chiều rộng. Tính diện tích của sân hình chữ nhật đó. (giải có lời giải và phép tính đầy đủ).

5. Trên cùng một nửa mặt phẳng có bờ chứa tia Ot, vẽ các tia Om và On sao cho góc tOm = 45 độ, góc tOn = 135 độ.

a. Trong 3 tia Ot, Om, On tia nào nằm giữa hai tia còn lại? Vì sao?

b. Tính số đo góc mOn. (ko cần vẽ hình)

1

Câu 2: 

a: =>-11/12x=-1/6-3/4=-2/12-9/12=-11/12

=>x=1

b: =>x-42=57-x-50=7-x

=>2x=49

hay x=49/2

d: =>x+1=3 hoặc x+1=-3

=>x=2 hoặc x=-4

e: =>2x+3=5 hoặc 2x+3=-5

=>2x=2 hoặc 2x=-8

=>x=1 hoặc x=-4

15 tháng 4 2018

Sửa lại đề:

\(M=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{49.50}\)

\(M=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-..........-\dfrac{1}{49}-\dfrac{1}{50}\)

\(M=1-\dfrac{1}{50}\)

\(M=\dfrac{50}{50}-\dfrac{1}{50}\)

\(M=\dfrac{49}{50}\)

15 tháng 4 2018

Đề bài là thu gọn / tính giá trị biểu thức nhé chứ không phải là So sánh , thiếu dữ kiện kìa

14 tháng 8 2017

a, \(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)

\(\left(1-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)

\(\dfrac{9}{10}.100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)

\(90-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)

\(\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\) \(=-88\)

\(x+\dfrac{206}{100}=\dfrac{-5}{176}\)

\(x=\dfrac{-5}{176}-\dfrac{206}{100}\)

\(x=\dfrac{-9198}{4400}\)

14 tháng 8 2017

a) \(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\left(1-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\dfrac{9}{10}.100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(90-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=90-89\)

\(\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=1\)

\(\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)=\dfrac{1}{2}\)

\(x+\dfrac{206}{100}=5\)

\(x=5-\dfrac{206}{100}\)

\(x=\dfrac{147}{50}\)

Vậy \(x=\dfrac{147}{50}\)

17 tháng 4 2017

\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{299}{600}\)

\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{299}{600}\)

\(\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{299}{600}\)

\(\dfrac{1}{x+1}=\dfrac{1}{2}-\dfrac{299}{600}\)

\(\dfrac{1}{x+1}=\dfrac{300}{600}-\dfrac{299}{600}\)

\(\dfrac{1}{x+1}=\dfrac{1}{600}\)

=> x + 1 = 600

x = 600 - 1

x = 599

Vậy x = 599

18 tháng 3 2018

|2x - 1|.\(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{1996.1997}\right)\)= 1996

|2x - 1|.\(\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{1996}-\dfrac{1}{1997}\right)\)= 1996

|2x - 1|.\(\left(1-\dfrac{1}{1997}\right)\)= 1996

|2x - 1|. \(\dfrac{1996}{1997}\)= 1996

|2x - 1| = 1996 : \(\dfrac{1996}{1997}\)

|2x - 1| = 1996 . \(\dfrac{1997}{1996}\)

|2x - 1| = 1997

2x - 1 = ± 1997

TH1:

2x -1 = 1997

2x = 1997 +1

2x= 1998

x= 1998:2

x=999

TH2:

2x-1= -1997

2x= -1997+1

2x= -1996

x= -1996:2

x= -998

Vậy x {999; -998}

18 tháng 3 2018

Phân phối phép nhân với phép cộng: v

14 tháng 6 2018

\(\Rightarrow\left(1+1+...+1\right)+2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...\dfrac{1}{n\left(n+1\right)}\right)\)[có (n-1) số 1]

\(\Rightarrow\left(n-1\right)+2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)

\(\Rightarrow\left(n-1\right)+2\left(\dfrac{1}{2}-\dfrac{1}{n+1}\right)\)

\(\Rightarrow\left(n-1\right)+\left(1-\dfrac{2}{n+1}\right)\)

\(\Rightarrow n-\dfrac{2}{n+1}\)

\(\Rightarrow\dfrac{n\left(n+1\right)}{n+1}-\dfrac{2}{n+1}\)

\(\Rightarrow\dfrac{n^2+n-2}{n+1}\)

17 tháng 4 2017

\(\Rightarrow\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\)

\(\Rightarrow1-\dfrac{1}{x+1}=\dfrac{2016}{2017}\)

\(\Rightarrow\dfrac{1}{x+1}=1-\dfrac{2016}{2017}\)

\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{2017}\)

\(\Rightarrow x+1=2017\)

\(\Rightarrow x=2017-1=2016\)

Vậy x = 2016

17 tháng 4 2017

\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+\(\dfrac{1}{x\left(x+1\right)}\) = \(\dfrac{2016}{2017}\)

1 - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\)- \(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)- \(\dfrac{1}{4}\)+ \(\dfrac{1}{x\left(x+1\right)}\)=\(\dfrac{2016}{2017}\)

\(\dfrac{3}{4}\)+\(\dfrac{1}{x\left(x+1\right)}\)=\(\dfrac{2016}{2017}\)

\(\dfrac{1}{x\left(x+1\right)}\)= \(\dfrac{2013}{8068}\)

Bn tự lm tiếp nhé!!! Sorry mk đang vội

25 tháng 7 2017

\(a,\dfrac{3}{4}-1\dfrac{1}{2}+0,5:\dfrac{5}{12}.\)

\(=\dfrac{3}{4}-\dfrac{3}{2}+\dfrac{1}{2}:\dfrac{5}{12}.\)

\(=\dfrac{3}{4}-\dfrac{6}{4}+\dfrac{1}{2}.\dfrac{12}{5}.\)

\(=-\dfrac{3}{4}+\dfrac{12}{10}.\)

\(=-\dfrac{3}{4}+\dfrac{6}{5}.\)

\(=-\dfrac{15}{20}+\dfrac{24}{20}=\dfrac{9}{20}.\)

Vậy.....

\(b,\left(-2\right)^2-1\dfrac{5}{27}.\left(-\dfrac{3}{2}\right)^3.\)

\(=4-1\dfrac{5}{27}.\left(-\dfrac{27}{8}\right).\)

\(=4-\dfrac{32}{27}.\left(-\dfrac{27}{8}\right).\)

\(=4-\left(-4\right).\)

\(=4+4=8.\)

Vậy.....

\(c,\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}.\)

\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}.\)

\(=\dfrac{1}{2}+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{99}-\dfrac{1}{99}\right)-\dfrac{1}{100}.\)

\(=\dfrac{1}{2}+0+0+...+0-\dfrac{1}{100}.\)

\(=\dfrac{1}{2}-\dfrac{1}{100}.\)

\(=\dfrac{50}{100}-\dfrac{1}{100}=\dfrac{49}{100}.\)

Vậy.....