\(\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)\left(1-\frac{4}{25}\right)....\left(1-\fr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2016

\(A=\left(\frac{1^2-2^2}{1^2}\right)\left(\frac{3^2-2^2}{3^2}\right)\left(\frac{5^2-2^2}{5^2}\right)...\left(\frac{\left(2n-1\right)^2-2^2}{\left(2n-1\right)^2}\right)\)

\(=\frac{-1\cdot3}{1^2}\cdot\frac{1\cdot5}{3^2}\cdot\frac{3\cdot7}{5^2}...\cdot\frac{\left(2n-3\right)\left(2n+1\right)}{\left(2n-1\right)^2}=-\frac{1}{1}\cdot\frac{2n+1}{2n-1}=-\frac{2n+1}{2n-1}\)

30 tháng 9 2019

A=-3.(1-(2/3)2)(1-(2/5)2)...(1-(2/11)2)=-3.(1-2/3)(1+2/3)(1-2/5)(1+2/5)...(1-2/11)(1+2/11)=-3.\(\frac{1}{3}\).\(\frac{5}{3}\).\(\frac{3}{5}\).\(\frac{7}{5}\)...\(\frac{9}{11}.\frac{13}{11}\)

=  -\(\frac{13}{11}\)

18 tháng 5 2017

\(A=\frac{1}{841}\)

30 tháng 8 2017

làm kiểu j thế

29 tháng 9 2019

\(A=\frac{\left(1+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right).....\left(51^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)....\left(52^4+\frac{1}{4}\right)}\)

\(=\frac{\left(1+1+\frac{1}{2}\right)\left(1-1+\frac{1}{2}\right)....\left(11^2-11+\frac{1}{2}\right)}{\left(2+2^2+\frac{1}{2}\right)\left(2^2-2+\frac{1}{2}\right)....\left(12^2-12+\frac{1}{2}\right)}\)

\(=\frac{\frac{1}{2}\left(1.2+\frac{1}{2}\right)\left(2.3+\frac{1}{2}\right)....\left(11.12+\frac{1}{2}\right)}{\left(2.3+\frac{1}{2}\right)\left(3.4+\frac{1}{2}\right)....\left(12.13+\frac{1}{2}\right)}\)

\(=\frac{\frac{1}{2}}{12.13+\frac{1}{2}}\)

\(=\frac{1}{313}\)

Chúc bạn học tốt !!!