Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(A=\dfrac{3}{4}.\dfrac{8}{9}...\dfrac{9999}{10000}\)
\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}...\dfrac{99.101}{100.100}\)
\(=\dfrac{1.2...99}{2.3...100}.\dfrac{3.4...101}{2.3...100}\)
\(=\dfrac{1}{100}.\dfrac{101}{2}\)
\(=\dfrac{101}{200}\)
1. \(A=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}{4\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}=\dfrac{2}{4}=\dfrac{1}{2}\)
2. \(B=\dfrac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\dfrac{1}{5}\)
3.\(C=\dfrac{2^2.3^2.\text{4^2.5^2}.5^2}{1.2^2.3^2.4^2.5.6^2}=\dfrac{125}{36}\)
4.D=\(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right).\dfrac{4}{9}.\dfrac{1}{16}=\dfrac{19}{30}.\dfrac{1}{36}=\dfrac{19}{1080}\)
b) \(\dfrac{5-\dfrac{5}{3}+\dfrac{5}{9}-\dfrac{5}{27}}{8-\dfrac{8}{3}+\dfrac{8}{9}-\dfrac{8}{27}}=\dfrac{5\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}{8\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}=\dfrac{5}{8}\)
Vì không có thời gian nên mình chỉ làm câu khó nhất thôi, tick mình nhé
Ta có :
\(A=\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{16}\right)\left(1-\dfrac{1}{25}\right)...............\left(1-\dfrac{1}{361}\right)\left(1-\dfrac{1}{400}\right)\)
\(\Rightarrow A=\left(\dfrac{9}{9}-\dfrac{1}{9}\right)\left(\dfrac{16}{16}-\dfrac{1}{16}\right)\left(\dfrac{25}{25}-\dfrac{1}{25}\right).............\left(\dfrac{361}{361}-\dfrac{1}{361}\right)\left(\dfrac{400}{400}-\dfrac{1}{400}\right)\)\(\Rightarrow A=\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}................\dfrac{360}{361}.\dfrac{399}{400}\)
\(\Rightarrow A=\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}.\dfrac{4.6}{5^2}...............\dfrac{18.20}{19^2}.\dfrac{19.21}{20^2}\)
\(\Rightarrow A=\dfrac{\left(2.3.4......19\right)\left(4.5.6......21\right)}{\left(3.4.5.....20\right)\left(3.4.5...20\right)}=\dfrac{2.21}{3.20}=\dfrac{7}{10}\)
Bài 1:
a, \(\left(x-2\right)^2=9\)
\(\Rightarrow x-2\in\left\{-3;3\right\}\Rightarrow x\in\left\{-1;5\right\}\)
b, \(\left(3x-1\right)^3=-8\)
\(\Rightarrow3x-1=-2\Rightarrow3x=-1\)
\(\Rightarrow x=-\dfrac{1}{3}\)
c, \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\)
\(\Rightarrow x+\dfrac{1}{2}\in\left\{-\dfrac{1}{4};\dfrac{1}{4}\right\}\)
\(\Rightarrow x\in\left\{-\dfrac{3}{4};-\dfrac{1}{4}\right\}\)
d, \(\left(\dfrac{2}{3}\right)^x=\dfrac{4}{9}\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x=\left(\dfrac{2}{3}\right)^2\)
Vì \(\dfrac{2}{3}\ne\pm1;\dfrac{2}{3}\ne0\) nên \(x=2\)
e, \(\left(\dfrac{1}{2}\right)^{x-1}=\dfrac{1}{16}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{x-1}=\left(\dfrac{1}{2}\right)^4\)
Vì \(\dfrac{1}{2}\ne\pm1;\dfrac{1}{2}\ne0\) nên \(x-1=4\Rightarrow x=5\)
f, \(\left(\dfrac{1}{2}\right)^{2x-1}=8\) \(\Rightarrow\left(\dfrac{1}{2}\right)^{2x-1}=\left(\dfrac{1}{2}\right)^{-3}\) Vì \(\dfrac{1}{2}\ne\pm1;\dfrac{1}{2}\ne0\) nên \(2x-1=-3\) \(\Rightarrow2x=-2\Rightarrow x=-1\) Chúc bạn học tốt!!!11) \(\dfrac{5}{7}\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{4}{7}\right)+\left(\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{4}{7}\right):\dfrac{7}{5}\)
= \(\dfrac{5}{7}\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{4}{7}\right)+\left(\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{4}{7}\right)\cdot\dfrac{5}{7}\)
= \(\dfrac{5}{7}\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{4}{7}+\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{4}{7}\right)\)
= \(\dfrac{5}{7}\cdot0\)
=0
12) \(\dfrac{43}{5}\left(\dfrac{17}{3}-\dfrac{16}{9}+2\right)-\dfrac{43}{5}\left(\dfrac{17}{3}-\dfrac{16}{9}\right)\)
= \(\dfrac{43}{5}\left(\dfrac{17}{3}-\dfrac{16}{9}+2-\dfrac{17}{3}+\dfrac{16}{9}\right)\)
= \(\dfrac{43}{5}\cdot2=\dfrac{43}{10}\)
11, 5/7( 1/2-1/3+1/4)+ (1/3-1/2-1/4):7/5
= 5/7.(1/2 - 1/3 + 1/4 )+( 1/3 - 1/2 - 1/4). 5/7
= 5/7.(1/2 - 2/3 + 1/4 + 1/3 - 1/2 - 1/4)
= 5/7 . -1/3
= -5/21
12, 43/5.(17/3 - 16/9 + 2)- 43/5. (17/3 - 16/9)
= 43/5.( 17/3 - 16/9 + 2 - 17/3 + 16/9)
= 43/5 . 2
= 86/5
\(=\left(\dfrac{4}{4}-\dfrac{1}{4}\right)\left(\dfrac{9}{9}-\dfrac{1}{9}\right)\left(\dfrac{16}{16}-\dfrac{1}{16}\right)...\left(\dfrac{10000}{10000}-\dfrac{1}{10000}\right)\)
\(=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}....\cdot\dfrac{9999}{10000}\)
\(=\dfrac{3.8.15.....9999}{4.9.16.....10000}=\dfrac{\left(1.3\right)\left(2.4\right)\left(3.5\right)....\left(99.101\right)}{\left(2.2\right)\left(3.3\right)\left(4.4\right).....\left(100.100\right)}\)
\(=\dfrac{\left(1.2.3...99\right)\left(3.4.5....101\right)}{\left(2.3.4...100\right)\left(2.3.4...101\right)}=\dfrac{101.1}{100.2}=\dfrac{101}{200}\)