Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Năng lượng của electron ở trạng thái dừng n là \(E_n = -\frac{13,6}{n^2}.(eV)\)
\(hf_1 =\frac{hc}{\lambda_1}= E_3-E_1.(1) \)
\(hf_2 =\frac{hc}{\lambda_2}= E_5-E_2.(2) \)
Chia hai phương trình (1) và (2): \(\frac{\lambda_2}{\lambda_1}= \frac{E_3-E_1}{E_5-E_2}.(3)\)
Mặt khác: \(E_3-E_1 = 13,6.(1-\frac{1}{9}).\)
\(E_5-E_2 = 13,6.(\frac{1}{4}-\frac{1}{25}).\)
Thay vào (3) => \(\frac{\lambda_2}{\lambda_1}= \frac{800}{189}\) hay \(189 \lambda_2 = 800 \lambda_1.\)
electrong chuyển từ trạng thái dừng n = 3 xuống trạng thái dừng n =2 => nguyên tử hiđrô đã phát ra một năng lượng đúng bằng
\(\Delta E = E_{cao}-E_{thap}= -\frac{13,6}{3^2}-(-\frac{13,6}{2^2})= 13,6.(\frac{1}{4}-\frac{1}{9})= 1,89 eV= 1,89.1,6.10^{-19}V.\)
Mà \(\Delta E = \frac{hc}{\lambda}=> \lambda = \frac{hc}{\Delta E}= \frac{6,625.10^{-34}.3.10^8}{1,89.1,6.10^{-19}}= 6,57.10^{-7}m = 0,657 \mu m.\)
Năng lượng của nguyên tử ở trạng thái dừng \(n\):
\(E_n =-\frac{13,6}{n^2}.(eV)\)
Electron nhảy từ P (n=6) về K (n=1): \(hf_1 = E_6-E_1.(1)\)
Electron nhảy từ P (n=6) về L (n=2): \(hf_2 = E_6-E_2.(2)\)
Electron nhảy từ L (n=2) về K (n=1): \(hf_6 = E_2-E_1.(3)\)
Lấy (1) trừ đi (2), so sánh với (3) ta được : \(hf_1 -hf_2 = hf_3\)
=> \(f_3=f_1 -f_2.\)
Khi electron chuyển từ L (n = 2) sang K (n = 1) phát ra phô tôn có bước sóng λ21 thỏa mãn:
\(\frac{hc}{\lambda_{21}}= E_2-E_1,(1)\)
Tương tự
\(\frac{hc}{\lambda_{32}}= E_3-E_2,(2)\)
\(\frac{hc}{\lambda_{31}}= E_3-E_1,(3)\)
Cộng (2) cho (1), so sánh với (3):
\(\frac{hc}{\lambda_{21}}+\frac{hc}{\lambda_{32}}= \frac{hc}{\lambda_{31}}\)=> \(\frac{1}{\lambda_{31}}=\frac{1}{\lambda_{21}}+\frac{1}{\lambda_{32}} \)
=> \(\lambda_{31}= \frac{\lambda_{32}\lambda_{21}}{\lambda_{32}+\lambda_{21}}.\)
\(E_n = -\frac{13,6}{n^2},(eV)\)(với n = 1, 2, 3,..)
Nguyên tử hiđrô hấp thụ một phôtôn có năng lượng 2,55 eV.
Việc đầu tiên là cần phải xác định xem nguyên tử nhảy từ mức nào lên mức nào mà có hiệu năng lượng giữa hai mức đúng bằng 2,55 eV.
\(E_1 = -13,6eV\), \(E_3 = -1,51 eV\)
\(E_2 = -3,4eV\),\(E_4 = -0,85eV\)
Nhận thấy \(E_4-E_2= -0,85 +3,4= 2,55 eV.\)
Như vậy nguyên tử đã hấp thụ năng lượng và nhảy từ mức n = 2 lên mức n = 4.
Tiếp theo, nguyên tử đang ở mức n = 4 rồi thì nó có thể phát ra bước sóng nhỏ nhất ứng với từ n = 4 về n = 1 tức là \(\lambda_{41}\) thỏa mãn
\(\lambda_{41}= \frac{hc}{E_4-E_1}= \frac{6,625.10^{-34}.3.10^8}{(-0,85+13,6).1,6.10^{-19}}=9,74.10^{-8}m. \)
+ Ban đầu M là vân tối thứ 3 nên: \(x_M=\left(2+\frac{1}{2}\right)\frac{\lambda D}{a}\left(1\right)\)
+ Khi giãm S1S2 một lượng \(\Delta\)a thì M là vân sáng bậc n nên: \(x_M=n\frac{\lambda D}{a-\Delta a}\left(2\right)\)
+ Khi tăng S1S2 một lượng \(\Delta\)a thì M là vân sáng bậc 3n nên: \(x_M=3n\frac{\lambda D}{a+\Delta a}\left(3\right)\)
+ (2) và (3) \(\Rightarrow k\frac{\lambda D}{a-\Delta a}=3k\frac{\lambda d}{a+\Delta a}\Rightarrow\Delta a=\frac{a}{2}\)
+ Khi tăng S1S2 một lượng 2\(\Delta\)a thì M là sáng bậc k nên: \(x_M=k\frac{\lambda D}{a+2\Delta a}=2,5\frac{\lambda D}{a}\left(4\right)\)
+ Từ (1) và (4) \(\Rightarrow\) k = 5. Vậy tại M lúc này là vân sáng bậc 5.
Bước sóng dài nhất trong quang phổ Banmel sẽ là bước sóng ứng với bước chuyển từ 3 xuống 2
\(E=\frac{hc}{\lambda}=E_3-E_2=A\text{/}4-A\text{/}9\)
\(\Rightarrow A=2,18.10^{-19}J\)
Mình không hiểu câu hỏi của bạn lắm nhưng theo mình đoán bước sóng ngắn nhất này sẽ từ \(\text{n=∞ }\)
đến n=1
Năng lượng sẽ đúng bằng A
\(\lambda=\text{91,1528nm }\)
Động lượng của hạt giảm 3 lần --> tốc độ giảm 3 lần --> Vị trí trạng thái tăng 3 lần
Do vậy, e chuyển từ trạng thái 1 lên trạng thái 3.
Bước sóng nhỏ nhất khi nguyên tử chuyển từ mức 3 về mức 1.
\(\Rightarrow \dfrac{hc}{\lambda}=(-\dfrac{1}{3^2}+1).13,6.1,6.10^{-19}\)
\(\Rightarrow \lambda=...\)
Để electron nhảy từ quỹ đạo K (n=1) lên quỹ đạo L (n =2) thì nó cần hấp thụ năng lượng chính là
\(\varepsilon=\Delta E = E_2-E_1.\)
Đáp án: C
Ta có:
En - E1 = 12,1 eV
=> En = - 1,5 eV
=> n =3
=> nguyên tử H2 phát ra tối đa n.(n - 1)/2 = 3 vạch