Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
\(I=\int\left(cos^2x-cos^2x\cdot sin^3x\right)dx\\ =\int cos^2x\cdot dx-\int cos^2x\cdot sin^3x\cdot dx\\ =\frac{1}{2}\int\left(cos2x+1\right)dx+\int cos^2x\left(1-cos^2x\right)d\left(cosx\right)\\ =\frac{1}{4}sin2x+\frac{1}{2}+\frac{cos^3x}{3}-\frac{cos^5x}{5}+C\)
....
2) Xét riêng mẫu số:
\(sin2x+2\left(1+sinx+cosx\right)\\ =\left(sin2x+1\right)+2\left(sinx+cosx\right)+1\\ =\left(sinx+cosx\right)^2+2\left(sinx+cosx\right)+1\\ =\left(sinx+cosx+1\right)^2\\ =\left[\sqrt{2}cos\left(x-\frac{\pi}{4}\right)+1\right]^2\)
Khi đó:
\(I_2=\int\frac{sin\left(x-\frac{\pi}{4}\right)}{\left[\sqrt{2}cos\left(x-\frac{\pi}{4}\right)+1\right]^2}dx\\ =-\frac{1}{\sqrt{2}}\int\frac{d\left[\sqrt{2}cos\left(x-\frac{\pi}{4}\right)+1\right]}{\left[\sqrt{2}cos\left(x-\frac{\pi}{4}\right)+1\right]^2}\\ =\frac{1}{\sqrt{2}}\cdot\frac{1}{\sqrt{2}cos\left(x-\frac{\pi}{4}\right)+1}+C=\frac{1}{2cos\left(x-\frac{\pi}{4}\right)+1}\)
...
\(I_1=3\int_1^2x^2dx+\int_1^2\cos xdx+\int_1^2\frac{dx}{x}=x^3\)\(|^2 _1\)+\(\sin x\)\(|^2_1\) +\(\ln\left|x\right|\)\(|^2_1\)
\(=\left(8-1\right)+\left(\sin2-\sin1\right)+\left(\ln2-\ln1\right)\)
\(=7+\sin2-\sin1+\ln2\)
b) \(I_2=4\int_1^2\frac{dx}{x}-5\int_1^2x^4dx+2\int_1^2\sqrt{x}dx\)
\(=4\left(\ln2-\ln1\right)-\left(2^5-1^5\right)+\frac{4}{3}\left(2\sqrt{2}-1\sqrt{1}\right)\)
\(=4\ln2+\frac{8\sqrt{2}}{3}-32\frac{1}{3}\)
Câu 1)
Đặt \(\left\{\begin{matrix} u=\ln ^2x\\ dv=\frac{1}{x^2}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{2\ln x}{x}\\ v=\frac{-1}{x}\end{matrix}\right.\)
\(\int \left ( \frac{\ln}{x} \right )^2dx=\frac{-\ln^2x}{x}+2\int \frac{\ln x}{x^2}dx\)
Đặt \(\left\{\begin{matrix} t=\ln x\\ dk=\frac{1}{x^2}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} dt=\frac{1}{x}dx\\ k=-\frac{1}{x}\end{matrix}\right.\Rightarrow \int \frac{\ln x}{x^2}dx=-\frac{\ln x}{x}+\int \frac{1}{x^2}dx=\frac{-\ln x}{x}-\frac{1}{x}\)
\(\Rightarrow I=\left.\begin{matrix} e\\ 1\end{matrix}\right|\left(\frac{-\ln^2 x}{x}-\frac{2\ln x}{x}-\frac{2}{x}\right)=2-\frac{5}{e}\)
Câu 2)
\(I=\int ^{\frac{\pi}{4}}_{0}\frac{x}{1+\cos 2x}dx=\frac{1}{2}\int ^{\frac{\pi}{4}}_{0}\frac{x}{\cos^2x}dx\)
Đặt \(\left\{\begin{matrix} u=x\\ dv=\frac{dx}{\cos^2x}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=dx\\ v=\tan x\end{matrix}\right.\Rightarrow I=\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\frac{x\tan x}{2}-\frac{1}{2}\int^{\frac{\pi}{4}}_{0} \tan xdx\)
\(=\frac{\pi}{8}+\frac{1}{2}\int ^{\frac{\pi}{4}}_{0}\frac{d(\cos x)}{\cos x}=\frac{\pi}{8}+\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\frac{\ln |\cos x|}{2}=\frac{\pi}{8}+\frac{\ln\frac{\sqrt{2}}{2}}{2}\)
Câu 6:
Hoành độ giao điểm: \(\sqrt{1-x^2}=0\Leftrightarrow x=\pm1\)
\(\Rightarrow V=\pi\int\limits^1_{-1}\left(1-x^2\right)dx=\frac{4}{3}\pi\)
// Hoặc là tư duy theo 1 cách khác, biến đổi pt ban đầu ta có:
\(y=\sqrt{1-x^2}\Leftrightarrow y^2=1-x^2\Leftrightarrow x^2+y^2=1\)
Đây là pt đường tròn tâm O bán kính \(R=1\Rightarrow\) khi quay quanh Ox ta sẽ được một mặt cầu bán kính \(R=1\Rightarrow V=\frac{4}{3}\pi R^3=\frac{4}{3}\pi\)
Câu 7: Về bản chất, đây là 1 con tích phân sai, không thể tính được, do trên miền \(\left[\frac{\pi}{6};\frac{\pi}{2}\right]\) hàm dưới dấu tích phân không xác định tại \(x=\frac{\pi}{3}\) và \(x=\frac{2\pi}{3}\), nhưng nhắm mắt làm ngơ với lỗi ra đề sai đó và ta cứ mặc kệ nó, không quan tâm cứ máy móc áp dụng thì tính như sau:
Biến đổi biểu thức dưới dấu tích phân 1 chút trước:
\(\frac{sin^2x}{sin3x}=\frac{sin^2x}{3sinx-4sin^3x}=\frac{sinx}{3-4sin^2x}=\frac{sinx}{3-4\left(1-cos^2x\right)}=\frac{sinx}{4cos^2x-1}\)
\(\Rightarrow I=\int\limits^{\frac{\pi}{2}}_{\frac{\pi}{6}}\frac{sinx.dx}{4cos^2x-1}\Rightarrow\) đặt \(cosx=t\Rightarrow sinx.dx=-dt\)
\(\Rightarrow I=\int\limits^0_{\frac{\sqrt{3}}{2}}\frac{-dt}{4t^2-1}=\int\limits^{\frac{\sqrt{3}}{2}}_0\frac{dt}{\left(2t-1\right)\left(2t+1\right)}=\frac{1}{2}\int\limits^{\frac{\sqrt{3}}{2}}_0\left(\frac{1}{2t-1}-\frac{1}{2t+1}\right)dt\)
\(I=\frac{1}{4}ln\left|\frac{2t-1}{2t+1}\right|^{\frac{\sqrt{3}}{2}}_0=\frac{1}{4}ln\left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right)=\frac{1}{4}ln\left(2-\sqrt{3}\right)\)
\(\Rightarrow\left\{{}\begin{matrix}a=4\\b=2\\c=-1\end{matrix}\right.\) \(\Rightarrow a+2b+3c=5\)
Câu 8:
\(f\left(x\right)=\int\frac{1}{2x-1}dx=\frac{1}{2}\int\frac{d\left(2x-1\right)}{2x-1}=\frac{1}{2}ln\left|2x-1\right|+C\)
\(f\left(1\right)=1\Leftrightarrow\frac{1}{2}ln1+C=1\Rightarrow C=1\)
\(\Rightarrow f\left(x\right)=\frac{1}{2}ln\left|2x-1\right|+1\Rightarrow f\left(5\right)=\frac{1}{2}ln9+1=ln3+1\)
Câu 4:
\(I=\int\limits^1_{-1}f\left(x\right)dx=\int\limits^0_{-1}f\left(x\right)dx+\int\limits^1_0f\left(x\right)dx\)
Do \(f\left(x\right)\) là hàm chẵn \(\Rightarrow f\left(x\right)=f\left(-x\right)\) \(\forall x\)
Đặt \(x=-t\Rightarrow dx=-dt;\left\{{}\begin{matrix}x=-1\Rightarrow t=1\\x=0\Rightarrow t=0\end{matrix}\right.\)
\(\Rightarrow\int\limits^0_{-1}f\left(x\right)dx=\int\limits^0_1f\left(t\right).\left(-dt\right)=\int\limits^1_0f\left(t\right)dt=\int\limits^1_0f\left(x\right)dx\)
\(\Rightarrow I=\int\limits^1_0f\left(x\right)dx+\int\limits^1_0f\left(x\right)dx=2\int\limits^1_0f\left(x\right)dx=2\)
\(\Rightarrow\int\limits^1_0f\left(x\right)dx=1\)
Câu 5: Theo tính chất tích phân ta có:
\(\int\limits^{10}_0f\left(x\right)dx=\int\limits^2_0f\left(x\right)dx+\int\limits^6_2f\left(x\right)dx+\int\limits^{10}_6f\left(x\right)dx\)
\(\Rightarrow\int\limits^2_0f\left(x\right)dx+\int\limits^{10}_6f\left(x\right)dx=\int\limits^{10}_0f\left(x\right)dx-\int\limits^6_2f\left(x\right)dx=7-3=4\)
Đơn giản thôi ..tách và áp dụng tích phân từng phần là ok.\(\int\limits^{\frac{\Pi}{2}}_0x\sin\left(2x\right)dx\) đặt \(\begin{cases}u=x\\dv=sin\left(2x\right)dx\end{cases}\) →\(\begin{cases}du=dx\\v=\int sin\left(2x\right)dx=\frac{-1}{2}cos\left(2x\right)\end{cases}\)
→T1= \(\frac{-1}{2}x\times cos\left(2x\right)\left|\frac{\frac{\Pi}{2}}{0}\right|^{ }\) -- \(\int\limits^{\frac{\Pi}{2}}_{ }\frac{-1}{2}cos\left(2x\right)dx\)= \(\frac{\Pi}{4}\) + \(\left(\frac{1}{4}sin\left(2x\right)\right)\)|thế cận vô → T1=\(\frac{\Pi}{4}\)
T2= \(\int\limits x^3dx\) = \(\frac{x^4}{4}\)|| thế cận = \(\frac{\Pi^4}{64}\) suy ra T= \(\frac{\Pi}{4}+\frac{\Pi^4}{64}\)