K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2017

Giải bài 35 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Điều kiện xác định: x ≠ -1; x ≠ -2.

Quy đồng và khử mẫu ta được:

4.(x + 2) = -x2 – x + 2

⇔ 4x + 8 = -x2 – x + 2

⇔ 4x + 8 + x2 + x – 2 = 0

⇔ x2 + 5x + 6 = 0.

Có a = 1; b = 5; c = 6 ⇒ Δ = 52 – 4.1.6 = 1 > 0

⇒ Phương trình có hai nghiệm phân biệt:

Giải bài 35 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Chỉ có nghiệm x2 = -3 thỏa mãn điều kiện xác định.

Vậy phương trình có nghiệm x = -3.

\(a,PT\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}=3\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}=3\)

\(\Leftrightarrow\sqrt{x-1}=4\Leftrightarrow x-1=16\Leftrightarrow x=17\)

Vậy............................................

\(b,PT\Leftrightarrow\sqrt{\left(x^2-1\right)^2}=x-1\)

\(\Leftrightarrow x^2-1=x-1\Leftrightarrow x^2=x\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy...............................................

4 tháng 3 2018

hello bạn

6 tháng 3 2021

a) \(\sqrt{x+2}=4-x\)

ĐKXĐ : \(-2\le x\le4\)

Bình phương hai vế

<=> x + 2 = x2 - 8x + 16

<=> x2 - 8x + 16 - x - 2 = 0

<=> x2 - 9x + 14 = 0 (*)

Δ = b2 - 4ac = 81 - 56 = 25

Δ > 0 nên (*) có hai nghiệm phân biệt : x1 = -2 (tm) ; x2 = -7 (loại)

Vậy phương trình có nghiệm duy nhất x = -2

6 tháng 3 2021

b) \(\sqrt{x^2+1}=5-x^2\)

ĐKXĐ : \(-\sqrt{5}\le x\le\sqrt{5}\)

Bình phương hai vế

<=> x2 + 1 = x4 - 10x2 + 25

<=> x4 - 10x2 + 25 - x2 - 1 = 0

<=> x4 - 11x2 + 24 = 0 (1)

Đặt t = x2 ( t ≥ 0 )

(1) <=> t2 - 11t + 24 = 0 (*)

Δ = b2 - 4ac = 121 - 96 = 25

Δ > 0 nên (*) có hai nghiệm phân biệt : t1 = 8 (tm) ; t2 = 3(tm)

=> x2 = 8 hoặc x2 = 3

=> x = ±2√2 (loại) hoặc x = ±√3 (tm)

Vậy phương trình có nghiệm x = ±√3

29 tháng 7 2021

1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)

Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)

2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)

\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)

\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)

Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)

\(\Rightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x=2\left(tm\right)\)

Vậy pt có no x=2