K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2015

Bài nào không hiểu thì mình giải cho 

27 tháng 12 2015

dễ 

25 tháng 12 2015

a) Do A + B + C = 180 độ nên góc A bù với góc B + C => sin(B + C) = sinA (sin hai góc bù bằng nhau)

 (A + B)/2 + C/2 = 90 độ => hai góc (A + B)/2 và C/2 là hai góc phụ nhau => cos (A + B)/2 = sin(C/2) (Chắc đề bài bạn cho nhầm thành sinC)

b) Bạn xem lại đề nhé

c) \(sin^6a+cos^6a+3sin^2a.cos^2a=\left(sin^2a\right)^3+\left(cos^2a\right)^3+3.sin^2a.cos^2a\)

   = \(\left(sin^2a+cos^2a\right)\left(sin^4a+cos^4a-sin^2a.cos^2a\right)+3sin^2a.cos^2a\)

\(sin^4a+cos^4a+2sin^2a.cos^2a\)

\(\left(sin^2a+cos^2a\right)^2=1\)

3 tháng 4 2016

b,(*)chứng minh a=-3b:

xét a-b=2(a+b)

=>a-b=2a+2b

=>-b-2b=2a-a

=>-3b=a (đpcm) 

(*) tính a/b :

Từ -3b=a=>a/b=-3

(*)tính a và b:

Ta có : a-b=a/b=-3

             và 2(a+b)=a/b=-3

hệ pt<=>a-b=-3                   

        và 2(a+b)=-3    

       <=>a-b=-3    (1)

        và a+b=-1,5   (2)

Lấy (1)+(2),vế theo vế ta đc:

(a-b)+(a+b)=-3+(-1,5)

=>a-b+a+b=-4,5

=>2a=-4,5=>a=-2,25

Mà a-b=-3=>b=0,75

Vậy (a;b)=(-2,25;0,75)

 

 

 

3 tháng 4 2016

c) vì (x-y2+z)2 >= 0 với mọi x;y;z

      (y-2)2 >= 0 với mọi y

     (z+3)2 >= 0 với mọi z

=>(x-y2+z)2+(y-2)2+(z+3)2 >= 0 với mọi x;y;z

Mà theo đề: (x-y2+z)2+(y-2)2+(z+3)2=0

=>(x-y2+z)2=(y-2)2=(z+3)2=0

+)(y-2)2=0=>y=2

+)(z+3)2=0=>z=-3

Thay y=2;z=-3 vào (x-y2+z)2=0=>x-22+(-3)2=0=>x=-5

Vậy (x;y;z)=(-5;2;-3)

26 tháng 2 2016

a) \(4x-7>0\Leftrightarrow4x>7\)\(\Leftrightarrow x>\frac{7}{4}\)

b) \(-5x+8>0\Leftrightarrow5x<8\Leftrightarrow x<\frac{8}{5}\)

c)\(9x-10\le0\Leftrightarrow9x\le10\)\(\Leftrightarrow x\le\frac{10}{9}\)

d) \(\left(x+1\right)^2+4\le x^2+3x+10\)\(\Leftrightarrow x^2-2x+1+4\le x^2+3x+10\)

                                           \(\Leftrightarrow5x\ge-5\Leftrightarrow x\ge-1\)

14 tháng 5 2018

a,

4x - 7 > 0

↔ 4x > 7

↔ x > \(\dfrac{7}{4}\)

Vậy tập nghiệm của bất phương trình là S = { x / x>\(\dfrac{7}{4}\) }

b,

-5x + 8 > 0

↔ 8 > 5x

\(\dfrac{8}{5}\) > x

Vậy tập nghiệm của bất phương trình là S = { x / \(\dfrac{8}{5}\) > x }

c,

9x - 10 ≤ 0

↔ 9x ≤ 10

↔ x ≤ \(\dfrac{10}{9}\)

Vậy tập nghiệm của bất phương trình là S = { x / x ≤ \(\dfrac{10}{9}\) }

d,

( x - 1 )\(^2\) + 4 ≤ x\(^2\) + 3x + 10

↔ x\(^2\) - 2x +1 +4 ≤ x\(^2\) + 3x + 10

↔ 1 + 4 - 10 ≤ x \(^2\) - x\(^2\) + 3x + 2x

↔ -5 ≤ 5x

↔ -1 ≤ x

Vậy tập nghiệm của bất phương trình là S = { x / -1 ≤ x}

11 tháng 4 2016

Câu 1.   

a).  2A = 8 + 2 3 + 2 4 + . . . + 2 21.

=> 2A – A = 2 21 +8 – ( 4 + 2 2 ) + (2 3 – 2 3) +. . . + (2 20 – 2 20).  = 2 21.

     

b).          (x + 1) + ( x + 2 ) + . . .  . . . . . + (x + 100)  = 5750

=>             x + 1 + x + 2 + x + 3 + . . . . . . .. . .. . . . + x + 100     =  5750

=>   ( 1 + 2 + 3 + . .  . + 100) + ( x + x + x . . . . . . . + x )   =  5750

=>             101 . 50              +                100 x                          = 5750

                                                         100 x + 5050      =  5750

                                                         100 x     = 5750 – 5050

                                                         100 x     =  700

                                                                x     =  7

                   

 

 

 

 

                   101 . 50              +                100 x                          = 5750

                                                         100 x + 5050      =  5750

                                                         100 x     = 5750 – 5050

                                                         100 x     =  700

                                                                x     =  7

12 tháng 4 2016

Câu 1.   a).  2A = 8 + 2 3 + 2 4 + . . . + 2 21.

=> 2A – A = 2 21 +8 – ( 4 + 2 2 ) + (2 3 – 2 3) +. . . + (2 20 – 2 20).  = 2 21.

       b).          (x + 1) + ( x + 2 ) + . . .  . . . . . + (x + 100)  = 5750

=>             x + 1 + x + 2 + x + 3 + . . . . . . .. . .. . . . + x + 100     =  5750

=>   ( 1 + 2 + 3 + . .  . + 100) + ( x + x + x . . . . . . . + x )   =  5750

=>                101 . 50              +                  100 x                 = 5750

                                                         100 x + 5050      =  5750

                                                         100 x     = 5750 – 5050

                                                         100 x     =  700

                                                                x     =  7

a: \(\Leftrightarrow A=-\left(x^2-xy^2+2xz-3y^2\right)=-x^2+xy^2-2xz+3y^2\)

b: Vì tổng của B với \(4x^2y+5y^2-xz+z^2\) là một đa thức không chứa biến x nên \(B=-4x^2y+xz\)

29 tháng 4 2016

1) ( 2m - 1 )x² - 2mx + 1 = 0 
Ta có : 
b² - 4ac 
= (-2m)² - 4(2m - 1) 
= 4m² - 8m + 4 
= ( 2m - 2 )² 
Như vậy : (2m - 2)² ≥ 0 , ∀m ∈ IR 

Gọi x1 , x2 là 2 nghiệm của phương trình 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2m / (2m - 1) 
{ x1x2 = 1 / (2m - 1) 

Nếu nằm trong khoảng thì : 
-1 < x1 < x2 < 0 
Xét đoạn -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ pt sau 
{ (x1 + 1 )(x2 + 1) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 
Sử dụng Vi-ét 
=> 1/(2m - 1) + 2m/(2m - 1) + 1 > 0 
=> 2m / (2m - 1) + 2 > 0 

<=> ( 1 + 2m + 2m - 1 ) / (2m - 1) > 0 
<=> [2m + 2(2m - 1)] / (2m - 1) > 0 

<=> 4m / ( 2m - 1 ) > 0 
<=> ( 2m + 4m - 2 ) / ( 2m - 1 ) > 0 

<=> 4m / (2m - 1) > 0 
<=> ( 6m - 2 ) / ( 2m - 1 ) > 0 

Vẽ bảng xét dấu 
<=> m < 0 V m > 1/2 (1) 
<=> m < 1/2 V m > 3 (2) 

Xét đoạn x1 < x2 < 0 
{ x1 + x2 < 0 
{ x1x2 > 0 

{ 2m / (2m - 1) < 0 
{ 1 / (2m - 1) > 0 
Xét bảng xét dấu 
<=> 0 < m < 1/2 (3) 
<=> m > 1/2 (4) 

=> m không thuộc khoảng nào cả 
=> Vô nghiệm 

2) x² + 2(m + 3)x + 4m + 12 = 0 
Ta có 
b² - 4ac 
= [ 2(m + 3) ]² - 4(4m + 12) 
= 4(m + 3)² - 16m - 48 
= 4(m² + 6m + 9) - 16m - 48 
= 4m² + 24m + 36 - 16m - 48 
= 4m² + 8m - 12 
Để pt có nghiệm m < -1 V m > 3 

Gọi x1 , x2 là 2 nghiệm của pt 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = -2(m + 3) 
{ x1x2 = 4m + 12 

Ta đã có -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ bất pt sau : 
{ ( x1 + 1 )(x2 + 1 ) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 

{ -2(m + 3) + 4m + 12 + 1 > 0 
{ 4m + 12 + 2 > 0 

{ -2m - 6 + 4m + 12 + 1 > 0 
{ 4m + 14 > 0 

{ 2m > -7 
{ 4m > -14 

{ m > -7/2 
{ m > -7/2 
Hợp nghiệm lại 
m ∈ ( -7/2 ; -1 ) ∪ ( -3 ; +∞ ) 

3) 2x² + (2m - 1)x + m - 1 = 0 
Ta có 
b² - 4ac = (2m - 1)² - 4.2.(m - 1) 
= 4m² - 4m + 1 - 8m + 8 
= 4m² - 12m + 9 
= ( 2m - 3 )² 
Mà ( 2m - 3 )² ≥ 0 , ∀m ∈ IR 

Gọi x1 và x2 là 2 nghiệm của pt 

x1 = [-(2m - 1) - 2m +3 ]/ 2 = ( -4m + 2 ) /2 = -2m + 1 
x2 = [-(2m - 1) +2m - 3 ]/ 2 = -2/2 = -1 

Thế 
3x1 - 4x2 = 11 
3( -2m + 1 ) - 4.(-1) = 11 
<=> -6m + 3 + 4 = 11 
<=> -2m = 4 
<=> m = -2 

4) x² - 2(m - 3)x - 2(m - 1) = 0 
Ta có 
[ 2(m - 3)]² - 4.(-2)(m - 1) 
= 4(m - 3)² + 8(m - 1) 
= 4(m² - 6m + 9) + 8m - 8 
= 4m² - 24m + 36 + 8m - 8 
= 4m² - 16m + 28 
Xét tiếp 
(-16)² - 4.4.28 = -192 < 0 mà 4m² là số dương nên 4m² - 16m + 28 > 0 , ∀m ∈ IR 

Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2(m - 3) 
{ x1x2 = -2(m - 1) 

<=> ( x1 + x2 )² = 4(m - 3)² 
<=> x1² + 2x1x2 + x2² = 4(m² - 6m + 9) 
<=> x1² + x2² - (m - 1) = 4m² - 24m + 36 
<=> x1² + x2² = 4m² - 24m + 36 + m - 1 
<=> x1² + x2² = 4m² - 23m + 35 
Để x1² + x2² Min thì 4m² - 23m + 35 phải Min 
<=> 4m² - 23/4.2.2m + 529/16 + 31/16 
<=> ( 2m - 23/4 )² + 31/16 
Mà ( 2m - 23/4 )² ≥ 0 , ∀m ∈ IR 
<=> ( 2m - 23/4 )² + 31/16 ≥ 31/16 > 0 
Vậy đạt Min khi đó "=" xảy ra : 2m - 23/4 = 0 
<=> m = 23/8 

Vậy m = 23/8 thì x1² + x2² đạt Min 
=> Amin = x1² + x2² = 4(23/8)² - 23(23/8) + 35 = 31/161) ( 2m - 1 )x² - 2mx + 1 = 0 
Ta có : 
b² - 4ac 
= (-2m)² - 4(2m - 1) 
= 4m² - 8m + 4 
= ( 2m - 2 )² 
Như vậy : (2m - 2)² ≥ 0 , ∀m ∈ IR 

Gọi x1 , x2 là 2 nghiệm của phương trình 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2m / (2m - 1) 
{ x1x2 = 1 / (2m - 1) 

Nếu nằm trong khoảng thì : 
-1 < x1 < x2 < 0 
Xét đoạn -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ pt sau 
{ (x1 + 1 )(x2 + 1) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 
Sử dụng Vi-ét 
=> 1/(2m - 1) + 2m/(2m - 1) + 1 > 0 
=> 2m / (2m - 1) + 2 > 0 

<=> ( 1 + 2m + 2m - 1 ) / (2m - 1) > 0 
<=> [2m + 2(2m - 1)] / (2m - 1) > 0 

<=> 4m / ( 2m - 1 ) > 0 
<=> ( 2m + 4m - 2 ) / ( 2m - 1 ) > 0 

<=> 4m / (2m - 1) > 0 
<=> ( 6m - 2 ) / ( 2m - 1 ) > 0 

Vẽ bảng xét dấu 
<=> m < 0 V m > 1/2 (1) 
<=> m < 1/2 V m > 3 (2) 

Xét đoạn x1 < x2 < 0 
{ x1 + x2 < 0 
{ x1x2 > 0 

{ 2m / (2m - 1) < 0 
{ 1 / (2m - 1) > 0 
Xét bảng xét dấu 
<=> 0 < m < 1/2 (3) 
<=> m > 1/2 (4) 

=> m không thuộc khoảng nào cả 
=> Vô nghiệm 

2) x² + 2(m + 3)x + 4m + 12 = 0 
Ta có 
b² - 4ac 
= [ 2(m + 3) ]² - 4(4m + 12) 
= 4(m + 3)² - 16m - 48 
= 4(m² + 6m + 9) - 16m - 48 
= 4m² + 24m + 36 - 16m - 48 
= 4m² + 8m - 12 
Để pt có nghiệm m < -1 V m > 3 

Gọi x1 , x2 là 2 nghiệm của pt 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = -2(m + 3) 
{ x1x2 = 4m + 12 

Ta đã có -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ bất pt sau : 
{ ( x1 + 1 )(x2 + 1 ) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 

{ -2(m + 3) + 4m + 12 + 1 > 0 
{ 4m + 12 + 2 > 0 

{ -2m - 6 + 4m + 12 + 1 > 0 
{ 4m + 14 > 0 

{ 2m > -7 
{ 4m > -14 

{ m > -7/2 
{ m > -7/2 
Hợp nghiệm lại 
m ∈ ( -7/2 ; -1 ) ∪ ( -3 ; +∞ ) 

3) 2x² + (2m - 1)x + m - 1 = 0 
Ta có 
b² - 4ac = (2m - 1)² - 4.2.(m - 1) 
= 4m² - 4m + 1 - 8m + 8 
= 4m² - 12m + 9 
= ( 2m - 3 )² 
Mà ( 2m - 3 )² ≥ 0 , ∀m ∈ IR 

Gọi x1 và x2 là 2 nghiệm của pt 

x1 = [-(2m - 1) - 2m +3 ]/ 2 = ( -4m + 2 ) /2 = -2m + 1 
x2 = [-(2m - 1) +2m - 3 ]/ 2 = -2/2 = -1 

Thế 
3x1 - 4x2 = 11 
3( -2m + 1 ) - 4.(-1) = 11 
<=> -6m + 3 + 4 = 11 
<=> -2m = 4 
<=> m = -2 

4) x² - 2(m - 3)x - 2(m - 1) = 0 
Ta có 
[ 2(m - 3)]² - 4.(-2)(m - 1) 
= 4(m - 3)² + 8(m - 1) 
= 4(m² - 6m + 9) + 8m - 8 
= 4m² - 24m + 36 + 8m - 8 
= 4m² - 16m + 28 
Xét tiếp 
(-16)² - 4.4.28 = -192 < 0 mà 4m² là số dương nên 4m² - 16m + 28 > 0 , ∀m ∈ IR 

Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2(m - 3) 
{ x1x2 = -2(m - 1) 

<=> ( x1 + x2 )² = 4(m - 3)² 
<=> x1² + 2x1x2 + x2² = 4(m² - 6m + 9) 
<=> x1² + x2² - (m - 1) = 4m² - 24m + 36 
<=> x1² + x2² = 4m² - 24m + 36 + m - 1 
<=> x1² + x2² = 4m² - 23m + 35 
Để x1² + x2² Min thì 4m² - 23m + 35 phải Min 
<=> 4m² - 23/4.2.2m + 529/16 + 31/16 
<=> ( 2m - 23/4 )² + 31/16 
Mà ( 2m - 23/4 )² ≥ 0 , ∀m ∈ IR 
<=> ( 2m - 23/4 )² + 31/16 ≥ 31/16 > 0 
Vậy đạt Min khi đó "=" xảy ra : 2m - 23/4 = 0 
<=> m = 23/8 

Vậy m = 23/8 thì x1² + x2² đạt Min 
=> Amin = x1² + x2² = 4(23/8)² - 23(23/8) + 35 = 31/161) ( 2m - 1 )x² - 2mx + 1 = 0 
Ta có : 
b² - 4ac 
= (-2m)² - 4(2m - 1) 
= 4m² - 8m + 4 
= ( 2m - 2 )² 
Như vậy : (2m - 2)² ≥ 0 , ∀m ∈ IR 

Gọi x1 , x2 là 2 nghiệm của phương trình 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2m / (2m - 1) 
{ x1x2 = 1 / (2m - 1) 

Nếu nằm trong khoảng thì : 
-1 < x1 < x2 < 0 
Xét đoạn -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ pt sau 
{ (x1 + 1 )(x2 + 1) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 
Sử dụng Vi-ét 
=> 1/(2m - 1) + 2m/(2m - 1) + 1 > 0 
=> 2m / (2m - 1) + 2 > 0 

<=> ( 1 + 2m + 2m - 1 ) / (2m - 1) > 0 
<=> [2m + 2(2m - 1)] / (2m - 1) > 0 

<=> 4m / ( 2m - 1 ) > 0 
<=> ( 2m + 4m - 2 ) / ( 2m - 1 ) > 0 

<=> 4m / (2m - 1) > 0 
<=> ( 6m - 2 ) / ( 2m - 1 ) > 0 

Vẽ bảng xét dấu 
<=> m < 0 V m > 1/2 (1) 
<=> m < 1/2 V m > 3 (2) 

Xét đoạn x1 < x2 < 0 
{ x1 + x2 < 0 
{ x1x2 > 0 

{ 2m / (2m - 1) < 0 
{ 1 / (2m - 1) > 0 
Xét bảng xét dấu 
<=> 0 < m < 1/2 (3) 
<=> m > 1/2 (4) 

=> m không thuộc khoảng nào cả 
=> Vô nghiệm 

2) x² + 2(m + 3)x + 4m + 12 = 0 
Ta có 
b² - 4ac 
= [ 2(m + 3) ]² - 4(4m + 12) 
= 4(m + 3)² - 16m - 48 
= 4(m² + 6m + 9) - 16m - 48 
= 4m² + 24m + 36 - 16m - 48 
= 4m² + 8m - 12 
Để pt có nghiệm m < -1 V m > 3 

Gọi x1 , x2 là 2 nghiệm của pt 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = -2(m + 3) 
{ x1x2 = 4m + 12 

Ta đã có -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ bất pt sau : 
{ ( x1 + 1 )(x2 + 1 ) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 

{ -2(m + 3) + 4m + 12 + 1 > 0 
{ 4m + 12 + 2 > 0 

{ -2m - 6 + 4m + 12 + 1 > 0 
{ 4m + 14 > 0 

{ 2m > -7 
{ 4m > -14 

{ m > -7/2 
{ m > -7/2 
Hợp nghiệm lại 
m ∈ ( -7/2 ; -1 ) ∪ ( -3 ; +∞ ) 

3) 2x² + (2m - 1)x + m - 1 = 0 
Ta có 
b² - 4ac = (2m - 1)² - 4.2.(m - 1) 
= 4m² - 4m + 1 - 8m + 8 
= 4m² - 12m + 9 
= ( 2m - 3 )² 
Mà ( 2m - 3 )² ≥ 0 , ∀m ∈ IR 

Gọi x1 và x2 là 2 nghiệm của pt 

x1 = [-(2m - 1) - 2m +3 ]/ 2 = ( -4m + 2 ) /2 = -2m + 1 
x2 = [-(2m - 1) +2m - 3 ]/ 2 = -2/2 = -1 

Thế 
3x1 - 4x2 = 11 
3( -2m + 1 ) - 4.(-1) = 11 
<=> -6m + 3 + 4 = 11 
<=> -2m = 4 
<=> m = -2 

4) x² - 2(m - 3)x - 2(m - 1) = 0 
Ta có 
[ 2(m - 3)]² - 4.(-2)(m - 1) 
= 4(m - 3)² + 8(m - 1) 
= 4(m² - 6m + 9) + 8m - 8 
= 4m² - 24m + 36 + 8m - 8 
= 4m² - 16m + 28 
Xét tiếp 
(-16)² - 4.4.28 = -192 < 0 mà 4m² là số dương nên 4m² - 16m + 28 > 0 , ∀m ∈ IR 

Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2(m - 3) 
{ x1x2 = -2(m - 1) 

<=> ( x1 + x2 )² = 4(m - 3)² 
<=> x1² + 2x1x2 + x2² = 4(m² - 6m + 9) 
<=> x1² + x2² - (m - 1) = 4m² - 24m + 36 
<=> x1² + x2² = 4m² - 24m + 36 + m - 1 
<=> x1² + x2² = 4m² - 23m + 35 
Để x1² + x2² Min thì 4m² - 23m + 35 phải Min 
<=> 4m² - 23/4.2.2m + 529/16 + 31/16 
<=> ( 2m - 23/4 )² + 31/16 
Mà ( 2m - 23/4 )² ≥ 0 , ∀m ∈ IR 
<=> ( 2m - 23/4 )² + 31/16 ≥ 31/16 > 0 
Vậy đạt Min khi đó "=" xảy ra : 2m - 23/4 = 0 
<=> m = 23/8 

Vậy m = 23/8 thì x1² + x2² đạt Min 
=> Amin = x1² + x2² = 4(23/8)² - 23(23/8) + 35 = 31/161) ( 2m - 1 )x² - 2mx + 1 = 0 
Ta có : 
b² - 4ac 
= (-2m)² - 4(2m - 1) 
= 4m² - 8m + 4 
= ( 2m - 2 )² 
Như vậy : (2m - 2)² ≥ 0 , ∀m ∈ IR 

Gọi x1 , x2 là 2 nghiệm của phương trình 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2m / (2m - 1) 
{ x1x2 = 1 / (2m - 1) 

Nếu nằm trong khoảng thì : 
-1 < x1 < x2 < 0 
Xét đoạn -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ pt sau 
{ (x1 + 1 )(x2 + 1) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 
Sử dụng Vi-ét 
=> 1/(2m - 1) + 2m/(2m - 1) + 1 > 0 
=> 2m / (2m - 1) + 2 > 0 

<=> ( 1 + 2m + 2m - 1 ) / (2m - 1) > 0 
<=> [2m + 2(2m - 1)] / (2m - 1) > 0 

<=> 4m / ( 2m - 1 ) > 0 
<=> ( 2m + 4m - 2 ) / ( 2m - 1 ) > 0 

<=> 4m / (2m - 1) > 0 
<=> ( 6m - 2 ) / ( 2m - 1 ) > 0 

Vẽ bảng xét dấu 
<=> m < 0 V m > 1/2 (1) 
<=> m < 1/2 V m > 3 (2) 

Xét đoạn x1 < x2 < 0 
{ x1 + x2 < 0 
{ x1x2 > 0 

{ 2m / (2m - 1) < 0 
{ 1 / (2m - 1) > 0 
Xét bảng xét dấu 
<=> 0 < m < 1/2 (3) 
<=> m > 1/2 (4) 

=> m không thuộc khoảng nào cả 
=> Vô nghiệm 

2) x² + 2(m + 3)x + 4m + 12 = 0 
Ta có 
b² - 4ac 
= [ 2(m + 3) ]² - 4(4m + 12) 
= 4(m + 3)² - 16m - 48 
= 4(m² + 6m + 9) - 16m - 48 
= 4m² + 24m + 36 - 16m - 48 
= 4m² + 8m - 12 
Để pt có nghiệm m < -1 V m > 3 

Gọi x1 , x2 là 2 nghiệm của pt 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = -2(m + 3) 
{ x1x2 = 4m + 12 

Ta đã có -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ bất pt sau : 
{ ( x1 + 1 )(x2 + 1 ) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 

{ -2(m + 3) + 4m + 12 + 1 > 0 
{ 4m + 12 + 2 > 0 

{ -2m - 6 + 4m + 12 + 1 > 0 
{ 4m + 14 > 0 

{ 2m > -7 
{ 4m > -14 

{ m > -7/2 
{ m > -7/2 
Hợp nghiệm lại 
m ∈ ( -7/2 ; -1 ) ∪ ( -3 ; +∞ ) 

3) 2x² + (2m - 1)x + m - 1 = 0 
Ta có 
b² - 4ac = (2m - 1)² - 4.2.(m - 1) 
= 4m² - 4m + 1 - 8m + 8 
= 4m² - 12m + 9 
= ( 2m - 3 )² 
Mà ( 2m - 3 )² ≥ 0 , ∀m ∈ IR 

Gọi x1 và x2 là 2 nghiệm của pt 

x1 = [-(2m - 1) - 2m +3 ]/ 2 = ( -4m + 2 ) /2 = -2m + 1 
x2 = [-(2m - 1) +2m - 3 ]/ 2 = -2/2 = -1 

Thế 
3x1 - 4x2 = 11 
3( -2m + 1 ) - 4.(-1) = 11 
<=> -6m + 3 + 4 = 11 
<=> -2m = 4 
<=> m = -2 

4) x² - 2(m - 3)x - 2(m - 1) = 0 
Ta có 
[ 2(m - 3)]² - 4.(-2)(m - 1) 
= 4(m - 3)² + 8(m - 1) 
= 4(m² - 6m + 9) + 8m - 8 
= 4m² - 24m + 36 + 8m - 8 
= 4m² - 16m + 28 
Xét tiếp 
(-16)² - 4.4.28 = -192 < 0 mà 4m² là số dương nên 4m² - 16m + 28 > 0 , ∀m ∈ IR 

Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2(m - 3) 
{ x1x2 = -2(m - 1) 

<=> ( x1 + x2 )² = 4(m - 3)² 
<=> x1² + 2x1x2 + x2² = 4(m² - 6m + 9) 
<=> x1² + x2² - (m - 1) = 4m² - 24m + 36 
<=> x1² + x2² = 4m² - 24m + 36 + m - 1 
<=> x1² + x2² = 4m² - 23m + 35 
Để x1² + x2² Min thì 4m² - 23m + 35 phải Min 
<=> 4m² - 23/4.2.2m + 529/16 + 31/16 
<=> ( 2m - 23/4 )² + 31/16 
Mà ( 2m - 23/4 )² ≥ 0 , ∀m ∈ IR 
<=> ( 2m - 23/4 )² + 31/16 ≥ 31/16 > 0 
Vậy đạt Min khi đó "=" xảy ra : 2m - 23/4 = 0 
<=> m = 23/8 

Vậy m = 23/8 thì x1² + x2² đạt Min 
=> Amin = x1² + x2² = 4(23/8)² - 23(23/8) + 35 = 31/161) ( 2m - 1 )x² - 2mx + 1 = 0 
Ta có : 
b² - 4ac 
= (-2m)² - 4(2m - 1) 
= 4m² - 8m + 4 
= ( 2m - 2 )² 
Như vậy : (2m - 2)² ≥ 0 , ∀m ∈ IR 

Gọi x1 , x2 là 2 nghiệm của phương trình 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2m / (2m - 1) 
{ x1x2 = 1 / (2m - 1) 

Nếu nằm trong khoảng thì : 
-1 < x1 < x2 < 0 
Xét đoạn -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ pt sau 
{ (x1 + 1 )(x2 + 1) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 
Sử dụng Vi-ét 
=> 1/(2m - 1) + 2m/(2m - 1) + 1 > 0 
=> 2m / (2m - 1) + 2 > 0 

<=> ( 1 + 2m + 2m - 1 ) / (2m - 1) > 0 
<=> [2m + 2(2m - 1)] / (2m - 1) > 0 

<=> 4m / ( 2m - 1 ) > 0 
<=> ( 2m + 4m - 2 ) / ( 2m - 1 ) > 0 

<=> 4m / (2m - 1) > 0 
<=> ( 6m - 2 ) / ( 2m - 1 ) > 0 

Vẽ bảng xét dấu 
<=> m < 0 V m > 1/2 (1) 
<=> m < 1/2 V m > 3 (2) 

Xét đoạn x1 < x2 < 0 
{ x1 + x2 < 0 
{ x1x2 > 0 

{ 2m / (2m - 1) < 0 
{ 1 / (2m - 1) > 0 
Xét bảng xét dấu 
<=> 0 < m < 1/2 (3) 
<=> m > 1/2 (4) 

=> m không thuộc khoảng nào cả 
=> Vô nghiệm 

2) x² + 2(m + 3)x + 4m + 12 = 0 
Ta có 
b² - 4ac 
= [ 2(m + 3) ]² - 4(4m + 12) 
= 4(m + 3)² - 16m - 48 
= 4(m² + 6m + 9) - 16m - 48 
= 4m² + 24m + 36 - 16m - 48 
= 4m² + 8m - 12 
Để pt có nghiệm m < -1 V m > 3 

Gọi x1 , x2 là 2 nghiệm của pt 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = -2(m + 3) 
{ x1x2 = 4m + 12 

Ta đã có -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ bất pt sau : 
{ ( x1 + 1 )(x2 + 1 ) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 

{ -2(m + 3) + 4m + 12 + 1 > 0 
{ 4m + 12 + 2 > 0 

{ -2m - 6 + 4m + 12 + 1 > 0 
{ 4m + 14 > 0 

{ 2m > -7 
{ 4m > -14 

{ m > -7/2 
{ m > -7/2 
Hợp nghiệm lại 
m ∈ ( -7/2 ; -1 ) ∪ ( -3 ; +∞ ) 

3) 2x² + (2m - 1)x + m - 1 = 0 
Ta có 
b² - 4ac = (2m - 1)² - 4.2.(m - 1) 
= 4m² - 4m + 1 - 8m + 8 
= 4m² - 12m + 9 
= ( 2m - 3 )² 
Mà ( 2m - 3 )² ≥ 0 , ∀m ∈ IR 

Gọi x1 và x2 là 2 nghiệm của pt 

x1 = [-(2m - 1) - 2m +3 ]/ 2 = ( -4m + 2 ) /2 = -2m + 1 
x2 = [-(2m - 1) +2m - 3 ]/ 2 = -2/2 = -1 

Thế 
3x1 - 4x2 = 11 
3( -2m + 1 ) - 4.(-1) = 11 
<=> -6m + 3 + 4 = 11 
<=> -2m = 4 
<=> m = -2 

4) x² - 2(m - 3)x - 2(m - 1) = 0 
Ta có 
[ 2(m - 3)]² - 4.(-2)(m - 1) 
= 4(m - 3)² + 8(m - 1) 
= 4(m² - 6m + 9) + 8m - 8 
= 4m² - 24m + 36 + 8m - 8 
= 4m² - 16m + 28 
Xét tiếp 
(-16)² - 4.4.28 = -192 < 0 mà 4m² là số dương nên 4m² - 16m + 28 > 0 , ∀m ∈ IR 

Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2(m - 3) 
{ x1x2 = -2(m - 1) 

<=> ( x1 + x2 )² = 4(m - 3)² 
<=> x1² + 2x1x2 + x2² = 4(m² - 6m + 9) 
<=> x1² + x2² - (m - 1) = 4m² - 24m + 36 
<=> x1² + x2² = 4m² - 24m + 36 + m - 1 
<=> x1² + x2² = 4m² - 23m + 35 
Để x1² + x2² Min thì 4m² - 23m + 35 phải Min 
<=> 4m² - 23/4.2.2m + 529/16 + 31/16 
<=> ( 2m - 23/4 )² + 31/16 
Mà ( 2m - 23/4 )² ≥ 0 , ∀m ∈ IR 
<=> ( 2m - 23/4 )² + 31/16 ≥ 31/16 > 0 
Vậy đạt Min khi đó "=" xảy ra : 2m - 23/4 = 0 
<=> m = 23/8 

Vậy m = 23/8 thì x1² + x2² đạt Min 
=> Amin = x1² + x2² = 4(23/8)² - 23(23/8) + 35 = 31/16 

1 tháng 5 2016

bn dùng bao nhiêu thời gian để viết chỗ đó thế

26 tháng 4 2016

Trong đây có câu giống hệt: print - Thư viện Đề thi & Kiểm tra

Ở bài 17 í

19 tháng 4 2018

\(x^2+2x^2y^2+2y^2-\left(x^2y^2+2x^2\right)-2=0\)

<=>

26 tháng 1 2016

\(t^2+\left(3+\sqrt{3}\cos2x\right)t+\left(\sqrt{3}\cos2x+\frac{1}{2}\right)=0\)

\(\Delta=9+6\sqrt{3}\cos2x+3\cos^22x-4\sqrt{3}\cos2x-2=7+2\sqrt{3}\cos2x+3\cos^22x=6+\left(\sqrt{3}\cos2x+1\right)^2\)

t=

26 tháng 1 2016

ohochịu

8 tháng 8 2016

 Ta có:  a +b +c = 0:

=> (a + b + c)2 = 0 
=> a² + b² + c² + 2(ab + bc + ca) = 0 
=> a² + b² + c² = -2(ab + bc + ca)    (1

Mặt khác:

a^4 + b^4 + c^4 = 2(a²b² + b²c² + c²a²) 

=> (a² + b² + c²)² = 4(a²b² + b²c² + c²a²)    (cộng 2 vế cho 2(a²b² + b²c² + c²a²)

=> [-2(ab + bc + ca)]2 = 4(a²b² + b²c² + c²a²)  ( do (1) ) 

<=> 4.(a²b² + b²c² + c²a²) + 8.(ab²c + bc²a + a²bc) = 4(a²b² + b²c² + c²a²) 

<=> 8.(ab²c + bc²a + a²bc) = 0 

<=> 8abc.(a + b + c) = 0 

<=> 0 = 0 (đúng), Vì a + b + c = 0 

=> ĐPCM.ok

8 tháng 8 2016

xl, mik mới chứng minh đc bằng và cũng có sai sót trong bài làmhiu