\(\frac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\frac{2\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-3}{\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2019

b)gọi BT trên là P

\(P=\frac{x+16}{\sqrt{x}+3}=\frac{x-9+25}{\sqrt{x+3}}=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}=\sqrt{x}+3+\frac{25}{\sqrt{x}+3}-6\)

\(\sqrt{x}\ge0\Rightarrow\sqrt{x}+3>0\Rightarrow\frac{25}{\sqrt{x}+3}>0\)

Áp dụng BĐT Cô-si cho 2 số không âm \(\sqrt{x}+3\)\(\frac{25}{\sqrt{x}+3}\) ta có:

\(\sqrt{x}+3+\frac{15}{\sqrt{x}+3}\ge2\sqrt{\left(\sqrt{x}+3\right)\frac{25}{\sqrt{x}+3}}=10\\ \sqrt{x}+3+\frac{25}{\sqrt{x}+3}-6\ge4\\ \Rightarrow P\ge4\)

Dấu "=' xảy ra khi \(\left(\sqrt{x}+3\right)^2=25\Rightarrow x=4\)

Vậy \(P_{min}=4\) khi \(x=4\)

3 tháng 9 2019

gọi BT ở trên là P

a)\(P=\frac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\frac{2\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-3}{\sqrt{x}+3}\\ P=\frac{x\sqrt{x}+26\sqrt{x}-19}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{2\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\\ P=\frac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-4\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)} \\ P=\frac{x\sqrt{x}-x+16\sqrt{x}-16}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{x\left(\sqrt{x}-1\right)+16\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\\ P=\frac{\left(\sqrt{x}-1\right)\left(x+16\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{x+16}{\sqrt{x}+3}\)

6 tháng 7 2019

\(A=\frac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\frac{2\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-3}{\sqrt{x}+3}\left(Đk:x\ge0;x\ne1\right)\)

\(=\frac{x\sqrt{x}+26\sqrt{x}-19}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{2\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{x\sqrt{x}+16\sqrt{x}-x-16}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{x\left(\sqrt{x}-1\right)+16\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{x+16}{\sqrt{x}+3}\)

6 tháng 7 2019

Ta có:\(\frac{x+16}{\sqrt{x}+3}=\frac{x-9+25}{\sqrt{x}+3}=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+25}{\sqrt{x}+3}=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}=\sqrt{x}+3+\frac{25}{\sqrt{x}+3}-6\)

Vì \(x>0\Rightarrow\sqrt{x}+3>0\)

Áp dụng BĐT cô-si cho hai số dương  \(\sqrt{x+3}\)\(\frac{25}{\sqrt{x}+3}\)ta có:

\(\sqrt{x}+3+\frac{25}{\sqrt{x}+3}\ge2\sqrt{\left(\sqrt{x}+3\right).\frac{25}{\sqrt{x}+3}}\)

\(\Rightarrow A\ge4\)

\(\Rightarrow MinA=4\Leftrightarrow\sqrt{x}+3=\frac{25}{\sqrt{x}+3}\Leftrightarrow\left(\sqrt{x}+3\right)^2=25\Leftrightarrow x=4\left(TMĐK\right)\)

13 tháng 6 2019

\(=\frac{x\sqrt{x}+26\sqrt{x}-19-2\sqrt{x}\left(\sqrt{x+3}\right)+\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\) (ĐKXĐ: \(x\ne1;x\ge0\))

\(=\frac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-4\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{x\sqrt{x}+16\sqrt{x}-x-16}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{x-16}{\sqrt{x}+3}\) (Biểu thức được rút gọn với ĐKXĐ)

13 tháng 6 2019

ĐKXĐ: x\(\ge0;x\ne1\)

\(=\frac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\frac{2\sqrt{x}\left(\sqrt{x}+3\right)+\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{x+2\sqrt{x}-3}\)

\(=\frac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}-x+\sqrt{x}+3\sqrt{x}-3}{x+2\sqrt{x}-3}\)

\(=\frac{x\sqrt{x}+24\sqrt{x}-3x-22}{x+2\sqrt{x}-3}\)

Đến đây chả bt đúng hay sai :D

14 tháng 7 2018

ĐKXĐ:  \(x\ge0;x\ne1\)

mk chỉnh lại đề, đúng thì bạn tham khảo

\(P=\frac{x+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\frac{2\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-3}{\sqrt{x}+3}\)

\(=\frac{x+26\sqrt{x}-19}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{2\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{x+26\sqrt{x}-19}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{2x+6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{x-2\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{18\sqrt{x}-22}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

NV
24 tháng 10 2019

\(P=\frac{x-9+25}{\sqrt{x}+3}=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}=\sqrt{x}+3+\frac{25}{\sqrt{x}+3}-6\)

\(P\ge2\sqrt{\frac{25\left(\sqrt{x}+3\right)}{\sqrt{x}+3}}-6=4\)

\(P_{min}=4\) khi \(\sqrt{x}+3=5\Rightarrow x=4\)

\(a^3=4+3a.\sqrt[3]{2^2-3}=4+3a\)

\(\Rightarrow a^3-3a=4\)

\(\Leftrightarrow a\left(a^2-3\right)=4\Rightarrow a^2-3=\frac{4}{a}\)

\(\Rightarrow\frac{64}{\left(a^2-3\right)^2}-3a=\frac{64}{\left(\frac{4}{a}\right)^3}-3a=a^3-3a=4\)

10 tháng 8 2019

\(A=\frac{x\sqrt{x}+26\sqrt{x}-19-2\sqrt{x}\left(\sqrt{x}+3\right)+\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-4\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{x\sqrt{x}-x+16\sqrt{x}-16}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{x\left(\sqrt{x}-1\right)+16\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{\left(x+16\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{x+16}{\sqrt{x}+3}\)

+ \(A=\frac{x+16}{\sqrt{x}+3}=\frac{x-9+25}{\sqrt{x}+3}=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+25}{\sqrt{x}+3}\) \(=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}\)

\(=\sqrt{x}+3+\frac{25}{\sqrt{x}+3}-6\ge2\sqrt{\left(\sqrt{x}+3\right)\cdot\frac{25}{\sqrt{x}+3}}-6=10-6=4\)

Dấu "=" \(\Leftrightarrow\sqrt{x}+3=\frac{25}{\sqrt{x}+3}\Leftrightarrow\sqrt{x}+3=5\Leftrightarrow x=4\)

Vậy \(A=\frac{x+16}{\sqrt{x}+3}\)

Min A = 4 \(\Leftrightarrow x=4\)

10 tháng 8 2019
https://i.imgur.com/AT8lTUQ.jpg