\(\frac{x-2}{x+2}(\frac{5x+10}{7x-14}+\frac{x-2}{3x-6})\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2018

ĐKXĐ:   \(x\ne\pm2\)

\(\frac{x-2}{x+2}\left(\frac{5x+10}{7x-14}+\frac{x-2}{3x-6}\right)=\frac{x-2}{x+2}\left(\frac{5x+10}{7\left(x-2\right)}+\frac{x-2}{3\left(x-2\right)}\right)\)

\(=\frac{x-2}{x+2}\left(\frac{3\left(5x+10\right)}{21\left(x-2\right)}+\frac{7\left(x-2\right)}{21\left(x-2\right)}\right)=\frac{x-2}{x+2}\left(\frac{15x+30}{21\left(x-2\right)}+\frac{7x-14}{21\left(x-2\right)}\right)\)

\(=\frac{x-2}{x+2}\times\frac{22x+16}{21\left(x-2\right)}=\frac{22x+16}{x+2}\)

30 tháng 5 2017

Ta có : \(\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+...+\) \(\frac{1}{x^2+15x+56}=\frac{1}{14}\)

<=>\(\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}\)+...+ \(\frac{1}{\left(x+7\right)\left(x+8\right)}=\frac{1}{14}\)

<=> \(\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+...+\frac{1}{x+7}-\frac{1}{x+8}\)\(\frac{1}{14}\)

<=> \(\frac{1}{x+1}-\frac{1}{x+8}=\frac{1}{14}\)

<=> \(\frac{x+8-x-1}{\left(x+1\right)\left(x+8\right)}=\frac{1}{14}\)

<=>\(\frac{7.14}{14\left(x+1\right)\left(x+8\right)}=\frac{\left(x+1\right)\left(x+8\right)}{14\left(x+1\right)\left(x+8\right)}\)

<=> \(x^2+9x+8=98\)<=> \(x^2+9x-90=0\)

<=> (x-6)(x+15) =0 

<=> \(\orbr{\begin{cases}x=6\\x=-15\end{cases}}\)

Vậy phương trình có 2 nghiệm  x  \(\in\left(6,15\right)\)

==============

- Do ko biết viết dấu ngoặc nhọn nên thay = dấu ngoặc tròn

- Đề ko rõ ràng , lần sau nhớ ghi yêu cầu ?  

5 tháng 12 2018

1/ \(\frac{x-3}{3xy}\)+\(\frac{5x+3}{3xy}\)\(\frac{6x}{3xy}\)=\(\frac{3}{y}\)

2/\(\frac{5x-7}{2x-3}\)+\(\frac{4-3x}{2x-3}\)=\(\frac{2x-3}{2x-3}\)=1

3/\(\frac{11x-7}{3-5x}\)-\(\frac{6x+4}{5x-3}\)=\(\frac{11x-7}{3-5x}\)+\(\frac{6x+4}{3-5x}\)=\(\frac{17x-3}{3-5x}\)

4/\(\frac{3}{2x+6}\)-\(\frac{x-6}{2x^2+6x}\)=\(\frac{3x}{x\left(2x+6\right)}\)-\(\frac{x-6}{x\left(2x+6\right)}\)=\(\frac{2x-6}{x\left(2x+6\right)}\)

5/\(\frac{1}{2x-10}\)+\(\frac{2x}{3x^2-15x}\)=\(\frac{1}{2\left(x-5\right)}\)+\(\frac{2x}{3x\left(x-5\right)}\)=\(\frac{3x}{6x \left(x-5\right)}\)+\(\frac{4x}{6x\left(x-5\right)}\)

=\(\frac{7x}{6x\left(x-5\right)}\)=\(\frac{7}{6\left(x-5\right)}\)

24 tháng 3 2020

Phép nhân và phép chia các đa thứcPhép nhân và phép chia các đa thức

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0 1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\) c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\) e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\) g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h,...
Đọc tiếp

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0

1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)

c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)

e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\)

g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h, \(\frac{x+4}{5}.x+4=\frac{x}{3}-\frac{x-2}{2}\)

i, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\); k, \(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)

m, \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\); n, \(\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+1\right).\frac{1}{3}\left(x+2\right)\)

p, \(\frac{x}{3}-\frac{2x+1}{6}=\frac{x}{6}-x\); q, \(\frac{2+x}{5}-0,5x=\frac{1-2x}{4}+0,25\)

r, \(\frac{3x-11}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\); s, \(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{6}\)

t, \(\frac{2x-8}{6}.\frac{3x+1}{4}=\frac{9x-2}{8}+\frac{3x-1}{12}\); u, \(\frac{x+5}{4}-\frac{2x-3}{3}=\frac{6x-1}{3}+\frac{2x-1}{12}\)

v, \(\frac{5x-1}{10}+\frac{2x+3}{6}=\frac{x-8}{15}-\frac{x}{30}\); w, \(\frac{2x-\frac{4-3x}{5}}{15}=\frac{7x\frac{x-3}{2}}{5}-x+1\)

17

Đây là những bài cơ bản mà bạn!

29 tháng 3 2020

bạn ấy muốn thách xem bạn nào đủ kiên nhẫn đánh hết chỗ này

28 tháng 3 2020

ĐKXĐ : Tự tìm nha : )

Ta có : \(\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+...+\frac{1}{x^2+15x+56}=\frac{1}{14}\)

=> \(\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+...+\frac{1}{\left(x+7\right)\left(x+8\right)}=\frac{1}{14}\)

=> \(\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+...+\frac{1}{x+7}-\frac{1}{x+8}=\frac{1}{14}\)

=> \(\frac{1}{x+1}-\frac{1}{x+8}=\frac{1}{14}\)

=> \(\frac{x+8}{\left(x+1\right)\left(x+8\right)}-\frac{x+1}{\left(x+8\right)\left(x+1\right)}=\frac{1}{14}\)

=> \(14\left(x+8-x-1\right)=\left(x+1\right)\left(x+8\right)\)

=> \(x^2+x+8x+8=98\)

=> \(x^2+9x-90=0\)

=> \(\left(x+15\right)\left(x-6\right)=0\)

=> \(\left[{}\begin{matrix}x+15=0\\x-6=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-15\\x=6\end{matrix}\right.\) ( TM )

Vậy phương trình trên có nghiệm là \(S=\left\{6,-15\right\}\)

AH
Akai Haruma
Giáo viên
20 tháng 3 2020

Lời giải:

PT \(\Leftrightarrow \frac{1}{(x+1)(x+2)}+\frac{1}{(x+2)(x+3)}+\frac{1}{(x+3)(x+4)}+....+\frac{1}{(x+7)(x+8)}=\frac{1}{14}\)

(ĐK: $x\neq -1;-2;...;-8$)

\(\Leftrightarrow \frac{(x+2)-(x+1)}{(x+1)(x+2)}+\frac{(x+3)-(x+2)}{(x+2)(x+3)}+....+\frac{(x+8)-(x+7)}{(x+7)(x+8)}=\frac{1}{14}\)

\(\Leftrightarrow \frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+....+\frac{1}{x+7}-\frac{1}{x+8}=\frac{1}{14}\)

\(\Leftrightarrow \frac{1}{x+1}-\frac{1}{x+8}=\frac{1}{14}\Leftrightarrow \frac{7}{x^2+9x+8}=\frac{1}{14}\)

\(\Rightarrow x^2+9x+8=98\Leftrightarrow x^2+9x-90=0\Rightarrow x=6\) hoặc $x=-15$ (đều thỏa mãn)

Vậy........

2 tháng 2 2017

Phân tích mẫu thức thành nhân tử ta có : 

1/(x+1)(x+2)+1/(x+2)(x+3)+...+1/(x+7)(x+8)=1/14

1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)+...+1/(x+7)-1/(x+8)=1/14

1/(x+1)-1/(x+8)=1/14

7/(x+1)(x+8)=1/14

Nhân chéo ta có x^2+9x+8=98

x^2+9x-90=0

(x+15)(x-6)=0

Suy ra x=-15 hoặc x=6

a) Ta có: \(\frac{3x-11}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\)

\(\Leftrightarrow\frac{63\left(3x-11\right)}{693}-\frac{231x}{693}-\frac{99\left(3x-5\right)}{693}+\frac{77\left(5x-3\right)}{693}=0\)

\(\Leftrightarrow189x-693-231x-297x+495+385x-231=0\)

\(\Leftrightarrow46x-429=0\)

\(\Leftrightarrow46x=429\)

hay \(x=\frac{429}{46}\)

Vậy: \(x=\frac{429}{46}\)

b) Ta có: \(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{5}\)

\(\Leftrightarrow\frac{9x-0,7}{4}-\frac{5x-1,5}{7}-\frac{7x-1,1}{6}+\frac{5\left(0,4-2x\right)}{5}=0\)

\(\Leftrightarrow105\left(9x-0,7\right)-60\left(5x-1,5\right)-70\left(7x-1,1\right)+420\left(0,4-2x\right)=0\)

\(\Leftrightarrow945x-\frac{147}{2}-300x+90-490x+77+168-840x=0\)

\(\Leftrightarrow-685x+261.5=0\)

\(\Leftrightarrow-685x=-261.5\)

hay \(x=\frac{523}{1370}\)

Vậy: \(x=\frac{523}{1370}\)

c) Ta có: \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x-1\right)}{7}-5\)

\(\Leftrightarrow\frac{14\left(5x-3\right)}{84}-\frac{21\left(7x-1\right)}{84}-\frac{24\left(2x-1\right)}{84}+\frac{420}{84}=0\)

\(\Leftrightarrow70x-42-147x+21-48x+24+420=0\)

\(\Leftrightarrow-125x+423=0\)

\(\Leftrightarrow-125x=-423\)

hay \(x=\frac{423}{125}\)

Vậy: \(x=\frac{423}{125}\)

d) Ta có: \(14\frac{1}{2}-\frac{2\left(x+3\right)}{5}=\frac{3x}{2}-\frac{2\left(x-7\right)}{3}\)

\(\Leftrightarrow\frac{435}{30}-\frac{12\left(x+3\right)}{30}-\frac{45x}{30}+\frac{20\left(x-7\right)}{30}=0\)

\(\Leftrightarrow435-12x-36-45x+20x-140=0\)

\(\Leftrightarrow-37x+259=0\)

\(\Leftrightarrow-37x=-259\)

hay \(x=7\)

Vậy: x=7

\(=\dfrac{\left(x+3\right)\left(x-1\right)}{\left(x+5\right)\left(x-2\right)}\cdot\dfrac{\left(x-2\right)\left(x-7\right)}{\left(x+3\right)\left(x-2\right)}:\dfrac{\left(x-1\right)\left(x-3\right)}{\left(x+2\right)\left(x+5\right)}\)

\(=\dfrac{\left(x-1\right)\left(x-7\right)}{\left(x+5\right)\left(x-2\right)}\cdot\dfrac{\left(x+2\right)\left(x+5\right)}{\left(x-1\right)\left(x-3\right)}=\dfrac{\left(x-7\right)\left(x+2\right)}{\left(x-2\right)\left(x-3\right)}\)