Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^2-5x+3=0\)
Áp dụng định lí viet ta có: \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=3\end{cases}}\)
a) \(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=5^2-2.3=19\)
b) \(B=x_1^3+x_2^3=\left(x_1+x_2\right)^3-3\left(x_1+x_2\right)x_1x_2=5^3-3.5.3=80\)
c) \(C=\left|x_1-x_2\right|\)>0
=> \(C^2=x_1^2+x_2^2-2x_1x_2=19-2.3=13\)
=> C = căn 13
d) \(D=x_2+\frac{1}{x_1}+x_1+\frac{1}{x_2}=\left(x_1+x_2\right)+\frac{x_1+x_2}{x_1x_2}=5+\frac{5}{3}=5\frac{5}{3}\)
e) \(E=\frac{1}{x_1+3}+\frac{1}{x_2+3}=\frac{\left(x_1+x_2\right)+6}{x_1x_2+3\left(x_1+x_2\right)+9}=\frac{5+6}{3+3.5+9}=\frac{11}{27}\)
g) \(G=\frac{x_1-3}{x_1^2}+\frac{x_2-3}{x_2^2}=\left(\frac{1}{x_1}+\frac{1}{x_2}\right)-3\left(\frac{1}{x_1^2}+\frac{1}{x_2^2}\right)\)
\(=\frac{x_1+x_2}{x_1x_2}-3\frac{x_1^2+x_2^2}{x_1^2.x_2^2}=\frac{5}{3}-3.\frac{19}{3^2}=-\frac{14}{3}\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{\sqrt{3}}{3}=\frac{1}{\sqrt{3}}\\x_1x_2=\frac{\sqrt{3}-3}{3}=\frac{1}{\sqrt{3}}-1\end{matrix}\right.\)
a/
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(\frac{1}{\sqrt{3}}\right)^2-2\left(\frac{1}{\sqrt{3}}-1\right)=\frac{7}{3}-\frac{2}{\sqrt{3}}=\frac{7-2\sqrt{3}}{3}\)
b/ \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{x_1^2+x_2^2}{x_1x_2}=\frac{\frac{7-2\sqrt{3}}{3}}{\frac{\sqrt{3}-3}{3}}=\frac{7-2\sqrt{3}}{\sqrt{3}-3}=\frac{-15-\sqrt{3}}{6}\)
Theo hệ thức Vi-et\(\hept{\begin{cases}x_1+x_2+x_3=0\\x_1x_2+x_2x_3+x_3x_1=-1\\x_1x_2x_3=1\end{cases}}\)
Ta có \(T=\frac{1+x_1}{1-x_1}+\frac{1+x_2}{1-x_2}+\frac{1+x_3}{1-x_3}\)
\(=\frac{x_1-1}{1-x_2}+\frac{2}{1-x_1}+\frac{x_2-1}{1-x_2}+\frac{2}{1-x_2}+\frac{x_3-1}{1-x_3}+\frac{2}{1-x_3}\)
\(=-1+\frac{2}{1-x_1}-1+\frac{2}{1-x_2}-1+\frac{2}{1-x_3}\)
\(=2\left(\frac{1}{1-x_1}+\frac{1}{1-x_2}+\frac{1}{1-x_3}\right)-3\)
\(=2.\frac{\left(1-x_2\right)\left(1-x_3\right)+\left(1-x_1\right)\left(1-x_3\right)+\left(1-x_1\right)\left(1-x_2\right)}{\left(1-x_1\right)\left(1-x_2\right)\left(1-x_3\right)}-3\)
\(=2.\frac{1-x_2-x_3+x_2x_3+1-x_1-x_3+x_1x_3+1-x_1-x_2+x_1x_2}{\left(1-x_1-x_2+x_1x_2\right)\left(1-x_3\right)}-3\)
\(=2.\frac{3-2\left(x_1+x_2+x_3\right)+\left(x_1x_2+x_2x_3+x_3x_1\right)}{1-x_1-x_2+x_1x_2-x_3+x_1x_3+x_2x_3-x_1x_2x_3}-3\)
\(=2.\frac{3-2.0-1}{1-\left(x_1+x_2+x_3\right)+\left(x_1x_2+x_2x_3+x_3x_1\right)-x_1x_2x_3}-3\)
\(=2.\frac{2}{1-0-1-1}-3\)
\(=-7\)
Bài này lớp 7 mik đánh lộn vào lớp 9 ạ.mọi người thông cảm.
a Dw ơi,e thử làm cách khác:3
Vì \(x_1;x_2;x_3\) là 3 nghiệm của phương trình \(x^3-x-1\) nên:
\(x^3-x-1=\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\)
\(=x^3-\left(x_1+x_2+x_3\right)x^2+\left(x_1x_2+x_2x_3+x_1x_3\right)x-x_1x_2x_3\)
Do đó \(x_1+x_2+x_3=0;x_1x_2+x_2x_3+x_1x_3=-1;x_1x_2x_3=1\)
Lại có:\(x_1^3-x_1-1=0\)
\(\Leftrightarrow-x_1=1-x_1^3=\left(1-x_1\right)\left(1+x_1+x_1^2\right)\)
\(\Rightarrow\frac{1+x_1}{1-x_1}=\frac{\left(1+x_1\right)\left(1+x_1+x_1^2\right)}{-x_1}=\frac{x_1^3+3x_1^2+2x_1+1}{-x_1}=\frac{3x_1^2+3x_1-2}{-x_1}=-\left(3+2x_1+\frac{2}{x_1}\right)\)
Chứng minh tương tự,ta có:
\(\frac{1+x_2}{1-x_2}=-\left(3+2x_2+\frac{2}{x_2}\right)\)
\(\frac{1+x_3}{1-x_3}=-\left(3-2x_3+\frac{2}{x_3}\right)\)
Khi đó:\(T=\frac{1+x_1}{1-x_1}+\frac{1+x_2}{1-x_2}+\frac{1+x_3}{1-x_3}\)
\(=-\left(9+2\left(x_1+x_2+x_3\right)+2\cdot\frac{x_1x_2+x_2x_3+x_1x_3}{x_1x_2x_3}\right)\)
\(=-\left(9+2\cdot0+2\cdot\frac{-1}{1}\right)\)
\(=-7\)
Vậy T=-7
\(\frac{x_1\left(x_2-1\right)+x_2\left(x_1-1\right)}{\left(x_1-1\right)\left(x_2-1\right)}=\frac{13}{6}\Leftrightarrow\frac{2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=\frac{13}{6}\)
\(\Leftrightarrow\frac{2x_1x_2-1}{x_1x_2}=\frac{13}{6}\Leftrightarrow12x_1x_2-6=13x_1x_2\Rightarrow x_1x_2=-6\)
Theo Viet đảo, \(x_1;x_2\) là nghiệm:
\(x^2-x-6=0\)
Theo hệ thức Vi ét ta có: x1 + x2 = \(-\frac{b}{a}\) = \(\frac{3}{2}\) Và x1.x2 = \(\frac{c}{a}=\frac{1}{2}\)
a) \(\) \(\frac{1}{\text{x1}}+\frac{1}{x2}=\frac{x1+x2}{x1.x2}=\frac{\frac{3}{2}}{\frac{1}{2}}=\frac{3}{1}=3\)
b)\(\frac{1-x1}{x1}+\frac{1-x2}{x2}=\frac{\left(1-x1\right)x2+\left(1-x2\right)x1}{x1.x2}=\frac{x2-x1.x2+x1-x1.x2}{x1.x2}=\frac{\left(x1+x2\right)-2x1.x2}{x1.x2}=\frac{\frac{3}{2}-\frac{2.1}{2}}{\frac{1}{2}}=\frac{\frac{1}{2}}{\frac{1}{2}}=1\)
c) \(\frac{x1}{x2+1}+\frac{x2}{x1+1}=\frac{x1^2+x1+x2^2+x2}{x1.x2+x1+x2+1}=\frac{\left(x1^2+2x1.x2+x2^2\right)+\left(x1+x2\right)-2x1.x2}{x1.x2+\left(x1+x2\right)+1}=\frac{\left(x1+x2\right)^2+\left(x1+x2\right)-2x1.x2}{x1.x2+\left(x1+x2\right)+1}=\frac{\frac{3^2}{2^2}+\frac{3}{2}-\frac{2.1}{2}}{\frac{1}{2}+\frac{3}{2}+1}=\frac{11}{12}\)
\(\frac{x_2}{x_1+3}+\frac{x_1}{x_2+3}=\frac{x_2\left(x_2+3\right)+x_1\left(x_1+3\right)}{\left(x_1+3\right)\left(x_2+3\right)}=\frac{\left(x_1^2+x_2^2\right)+3\left(x_1+x_2\right)}{x_1x_2+3\left(x_1+x_2\right)+9}\)
\(=\frac{\left(x_1+x_2\right)^2-2x_1x_2+3\left(x_1+x_2\right)}{x_1x_2+3\left(x_1+x_2\right)+9}=\frac{\left(\frac{-1}{3}\right)^2-2\left(\frac{-1}{3}\right)+3\cdot\frac{1}{3}}{x-\frac{1}{3}+3\cdot\frac{1}{3}+9}=\frac{16}{87}\)
1/3 lôi đâu ra vậy ?