\(\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2017

Có : (a-b)^2 >= 0 

<=> a^2+b^2-2ab >= 0 

<=>a^2+b^2 >= 2ab

<=>a^2+b^2+2ab >= 4ab

<=> (a+b)^2 >= 4ab

<=> ab <= (a+b)^2/4

Áp dụng bđt trên thì a^3+b^3/a = (a+b).(a^2+b^2-ab)/2 = (a+b).[ (a+b)^2-3ab ]/2 >= (a+b).[(a+b)^2-3/4(a+b)^2]/2 = (a+b).1/4(a+b)^2/2

 = (a+b)^3/8 = (a+b/2)^3

=> ĐPCM

Dấu "=" xảy ra <=> a=b 

k mk nha

23 tháng 5 2020

help me !!!!!!

23 tháng 5 2020

câu 6 là với mọi a,b,c lớn hơn hoặc bằng 1 nhé

9 tháng 8 2019

2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.

Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)

\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)

Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)

Từ (2) và (3) ta có đpcm.

Sai thì chịu

9 tháng 8 2019

Xí quên bài 2 b:v

b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)

Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)

Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)

Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)

\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

áp dụng cô si ta...
Đọc tiếp

áp dụng cô si ta có:

+)\(\frac{a^5}{b^3}+\frac{a^3}{b}\ge\frac{2a^4}{b^2};\frac{b^5}{c^3}+\frac{b^3}{c}\ge\frac{2b^4}{c^2};\frac{c^5}{a^3}+\frac{c^3}{a}\ge\frac{2c^4}{a^2}\)

\(\Leftrightarrow\frac{a^5}{b^3}+\frac{b^5}{c^3}+\frac{c^5}{a^3}\ge2\left(\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\right)-\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)\)

+)\(\frac{a^4}{b^2}+a^2\ge\frac{2a^3}{b};\frac{b^4}{c^2}+b^2\ge\frac{2b^3}{c};\frac{c^4}{a^2}+c^2\ge\frac{2C^3}{a}\)

\(\Leftrightarrow\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\ge2\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)-\left(a^2+b^2+c^2\right)\)

+)\(\frac{a^3}{b}+ab\ge2a^2;\frac{b^3}{c}+bc\ge2b^2;\frac{c^3}{a}+ca\ge2c^2\)

\(\Leftrightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge\left(a^2+b^2+c^2\right)+\left(a^2+b^2+c^2-ab-bc-ca\right)\ge\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\ge\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)+\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}-a^2-b^2-c^2\right)\ge\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\)

\(\Leftrightarrow\frac{a^5}{b^3}+\frac{b^5}{c^3}+\frac{c^5}{a^3}\ge\left(\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\right)+\left(\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}-\frac{a^3}{b}-\frac{b^3}{c}-\frac{c^3}{a}\right)\ge\left(\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\right)\)

2
8 tháng 8 2017

Dảnh àk =))

8 tháng 8 2017

Cứ đăng đi - úng hộ ^^

10 tháng 7 2019

Bài 1:Thêm đk a > b > 0

\(VT=a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)

Áp dụng BĐT Cô si cho 3 số dương ta có đpcm.

Đẳng thức xảy ra khi \(a-b=b=\frac{1}{b\left(a-b\right)}\Leftrightarrow a=2;b=1\)

Bài 2: BĐT \(\Leftrightarrow\left(a-b\right)+\left(b+1\right)+\frac{4}{\left(a-b\right)\left(b+1\right)^2}\ge4\) (Thêm 1 vào hai vế +bớt + thêm b)

\(\Leftrightarrow\left(a-b\right)+\frac{1}{2}\left(b+1\right)+\frac{1}{2}\left(b+1\right)+\frac{4}{\left(a-b\right)\left(b+1\right)^2}\ge4\) (tách \(b+1=\frac{1}{2}\left(b+1\right)+\frac{1}{2}\left(b+1\right)\))

Áp dụng BĐT Cô si cho 4 số dương ta thu được đpcm.

Đẳng thức xảy ra khi \(a-b=\frac{1}{2}\left(b+1\right)=\frac{4}{\left(a-b\right)\left(b+1\right)^2}\)

\(\Leftrightarrow a=2;b=1\) (chị giải rõ ra nha, em làm tắt thôi)

Bài 3 để sau ạ, có lẽ cần thêm đk b > 0. Khi đó a/ b > 1 tức là a > b và > 0

10 tháng 7 2019

Dự đoán điểm rơi tại a = 1; b = 1/2

Em nghĩ ra rồi nhưng ko chắc đâu.

Bài 3: Dễ thấy b > 0 => a > b > 0

Trước tiên cần giảm bậc cái đã:D

\(2a^3+1=a^3+a^3+1\ge3\sqrt[3]{a^6.1}=3a^2\)

Đẳng thức xảy ra khi a = 1 (1)

Do vậy: \(\frac{2a^3+1}{4b\left(a-b\right)}\ge\frac{3a^2}{4ab-4b^2}\). Do a > b > 0. Chia hai vế cho b2 ta được:

\(\frac{2a^3+1}{4b\left(a-b\right)}\ge\frac{3\left(\frac{a}{b}\right)^2}{4.\frac{a}{b}-4}=\frac{3t^2}{4t-4}\) với \(t=\frac{a}{b}>1\)

Ta cần chứng minh \(\frac{3t^2}{4t-4}\ge3\Leftrightarrow\frac{t^2}{4t-4}\ge1\Leftrightarrow t^2-4t+4\ge0\Leftrightarrow\left(t-2\right)^2\ge0\) (đúng)

Đẳng thức xảy ra khi a = 2b tức là theo (1) suy ra \(b=\frac{1}{2}\)

Ta có đpcm.

12 tháng 7 2020

Áp dụng Bất đẳng thức Cauchy Schwarz dạng Engel ta có :

\(\frac{a^2}{a+2b}+\frac{b^2}{b+2a}\ge\frac{\left(a+b\right)^2}{a+2b+b+2a}=\frac{\left(a+b\right)^2}{3\left(a+b\right)}\)

\(2\left(\frac{a^2}{2a+b}+\frac{b^2}{2b+a}\right)\ge2\left(\frac{\left(a+b\right)^2}{2a+b+2b+a}\right)=2.\frac{\left(a+b\right)^2}{3\left(a+b\right)}\)

Cộng theo vế các bất đẳng thức cùng chiều ta được :

\(\left(\frac{a^2}{a+2b}+\frac{b^2}{b+2a}\right)+2\left(\frac{a^2}{2a+b}+\frac{b^2}{2b+a}\right)\ge\frac{\left(a+b\right)^2}{3\left(a+b\right)}+2.\frac{\left(a+b\right)^2}{3\left(a+b\right)}\)

Vậy ta có ngay điều phải chứng minh

13 tháng 10 2016

đi ,nt ,mình giải cho

13 tháng 10 2016

nt là gì

1 tháng 8 2020

Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)

Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\)\(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)

Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)

\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*

\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{​​}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)

\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)

Đẳng thức xảy ra khi a = b = c

P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:

27 tháng 7 2020

1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)

\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)

bài 2 xem có ghi nhầm ko

CHO a,b,c>0 thỏa mãn: \(a^2b^2+b^2c^2+c^2a^2\ge a^2+b^2+c^2\)CMR: \(\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(a^2+c^2\right)}\ge\frac{\sqrt{3}}{2}\)ĐẶT \(A=\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(c^2+a^2\right)}\)ĐẶT:\(\frac{1}{a}=x,\frac{1}{y}=b,\frac{1}{z}=c\)\(\Rightarrow x^2+y^2+z^2\ge1\)\(\Rightarrow...
Đọc tiếp

CHO a,b,c>0 thỏa mãn: \(a^2b^2+b^2c^2+c^2a^2\ge a^2+b^2+c^2\)

CMR: \(\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(a^2+c^2\right)}\ge\frac{\sqrt{3}}{2}\)

ĐẶT \(A=\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(c^2+a^2\right)}\)

ĐẶT:\(\frac{1}{a}=x,\frac{1}{y}=b,\frac{1}{z}=c\)

\(\Rightarrow x^2+y^2+z^2\ge1\)

\(\Rightarrow A=\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{z^2+y^2}\)

TA CÓ:

\(x\left(y^2+z^2\right)=\frac{1}{\sqrt{2}}\sqrt{2x^2\left(y^2+z^2\right)\left(y^2+z^2\right)}\le\frac{1}{\sqrt{2}}\sqrt{\frac{\left(2x^2+2y^2+2z^2\right)^3}{27}}=\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)TƯƠNG TỰ:

\(y\left(x^2+z^2\right)\le\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2},z\left(x^2+y^2\right)\le\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)LẠI CÓ:
\(A=\frac{x^3}{y^2+z^2}+\frac{y^3}{x^2+z^2}+\frac{z^3}{x^2+y^2}=\frac{x^4}{x\left(y^2+z^2\right)}+\frac{y^4}{y\left(x^2+z^2\right)}+\frac{z^4}{z\left(x^2+y^2\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y^2+z^2\right)+y\left(x^2+z^2\right)+z\left(x^2+y^2\right)}\ge\frac{1}{3.\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}} \)\(\ge\frac{\sqrt{3}}{2}\sqrt{x^2+y^2+z^2}\ge\frac{\sqrt{3}}{2}\)

DẤU BẰNG XẢY RA\(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\Rightarrow DPCM\)

 

2
10 tháng 9 2018

tự ra câu hởi tự trả lời à bạn

10 tháng 9 2018

tại tui trả lời bài này cho 1 bạn ở trên facebook nên phải chụp màn hình lại nên làm v á