\(\frac{5+\sqrt{5}}{5-\sqrt{5}}\)+\(\frac{5-\sqrt{5}}{5+\sqrt{5}}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2017

a, \(\frac{1}{\left(\sqrt{3}+\sqrt{2}\right)^2}\) +\(\frac{1}{\left(\sqrt{3}-\sqrt{2}\right)^2}\) =\(\frac{\left(\sqrt{3}+\sqrt{2}\right)^2+\left(\sqrt{3}-\sqrt{2}\right)^2}{\left(\sqrt{3}+\sqrt{2}\right)^2\left(\sqrt{3}-\sqrt{2}\right)^2}\) 

                                                                         \(=\frac{10}{1}=10\)

mấy câu còn lại bạn tự làm nốt nhé mk ban rồi 

22 tháng 7 2017

Câu bạn trả lời ở đâu v 

1 tháng 4 2020

a) \(\sqrt{17}-4\) b) \(\sqrt{3}\) c) \(\frac{\sqrt{2}}{2}\) d)\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) e) \(x-\sqrt{5}\)

f) \(4+2\sqrt{3}\) g) \(3+2\sqrt{2}\) h) \(x+\sqrt{x}+1\) i) \(\frac{3\sqrt{5}-\sqrt{15}}{10}\)

k) \(\sqrt{5}+\sqrt{6}\) i) 5 h) 0 l) \(\sqrt{5}+\sqrt{3}\) m) \(\frac{20\sqrt{3}}{3}\) d) 0

1 tháng 4 2020

ban ơi ccachs làm

27 tháng 9 2020

Giúp mình với ạ

11) \(\frac{3}{\sqrt{6}-\sqrt{3}}+\frac{4}{\sqrt{7}+\sqrt{3}}\) 12) \(\frac{6}{3\sqrt{2}+2\sqrt{3}}\) 13) \(\left(\sqrt{75}-3\sqrt{2}-\sqrt{12}\right)\left(\sqrt{3}+\sqrt{2}\right)\) 14)\(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\) 15)\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\) 16)\(\frac{\sqrt{2}}{2\sqrt{3}+4\sqrt{2}}\) 17)...
Đọc tiếp

11) \(\frac{3}{\sqrt{6}-\sqrt{3}}+\frac{4}{\sqrt{7}+\sqrt{3}}\)

12) \(\frac{6}{3\sqrt{2}+2\sqrt{3}}\)

13) \(\left(\sqrt{75}-3\sqrt{2}-\sqrt{12}\right)\left(\sqrt{3}+\sqrt{2}\right)\)

14)\(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)

15)\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\)

16)\(\frac{\sqrt{2}}{2\sqrt{3}+4\sqrt{2}}\)

17) \(\frac{1}{4-3\sqrt{2}}-\frac{1}{4+3\sqrt{2}}\)

18)\(\frac{6}{\sqrt{2}-\sqrt{3}+3}\)

19)\(\frac{\sqrt{3+2\sqrt{2}}+\sqrt{3-2\sqrt{2}}}{\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}}\)

20)\(\sqrt{24}+6\sqrt{\frac{2}{3}}+\frac{10}{\sqrt{6}-1}\)

21)\(2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{58}}\)

22)\(4\sqrt{20}-3\sqrt{125}+5\sqrt{45}-15\sqrt{\frac{1}{5}}\)

23)\(\left(3\sqrt{8}-2\sqrt{12}+\sqrt{20}\right):\left(3\sqrt{18}-2\sqrt{27}+\sqrt{45}\right)\)

24)\(\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)

25)\(\left(\sqrt{7}-\sqrt{5}\right)^2+2\sqrt{35}\)

26)\(\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}+\frac{3\sqrt{45}+\sqrt{243}}{\sqrt{5}+\sqrt{3}}\)

27)\(\frac{1}{\sqrt{7-\sqrt{24}}+1}-\frac{1}{\sqrt{7+\sqrt{24}}-1}\)

28)\(\frac{1}{2+\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{2}{3+\sqrt{3}}\)

29)\(\frac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)

30)\(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)

31)\(\left(\frac{2}{\sqrt{3}-1}+\frac{3}{\sqrt{3}-2}+\frac{15}{3-\sqrt{3}}\right).\frac{1}{\sqrt{3}+5}\)

32)\(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}-\sqrt{10}\)

3
29 tháng 9 2019

undefined

29 tháng 9 2019

undefined

8 tháng 8 2020

c) \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)

\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)

\(=3-\sqrt{6}+2\sqrt{6}-3\)

\(=\sqrt{6}\)

d) Đặt  \(D=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)

\(\Leftrightarrow D^2=2-\sqrt{3}+2+\sqrt{3}+2\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)

\(\Leftrightarrow D^2=4+2\sqrt{4-3}\)

\(\Leftrightarrow D^2=6\)

\(\Leftrightarrow D=\sqrt{6}\) (Vì D > 0)

e) \(E=\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}-\sqrt{\frac{3+\sqrt{5}}{3-\sqrt{5}}}\)

\(\Leftrightarrow E^2=\frac{3-\sqrt{5}}{3+\sqrt{5}}+\frac{3+\sqrt{5}}{3-\sqrt{5}}-2\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}\cdot\frac{3+\sqrt{5}}{3-\sqrt{5}}}\)

\(\Leftrightarrow E^2=\frac{9-6\sqrt{5}+5+9+6\sqrt{5}+5}{9-5}-2\sqrt{1}\)

\(\Leftrightarrow E^2=7-2=5\)

\(\Leftrightarrow E=\sqrt{5}\) (Vì E >0)

f) \(\left(\frac{1}{3-\sqrt{5}}-\frac{1}{3+\sqrt{5}}\right):\frac{5-\sqrt{5}}{\sqrt{5}-1}\)

\(=\frac{3+\sqrt{5}-3+\sqrt{5}}{9-5}:\sqrt{5}\)

\(=\frac{2\sqrt{5}}{4}\cdot\frac{1}{\sqrt{5}}\)

\(=\frac{1}{2}\)

17 tháng 8 2019

\(a)\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\)

\(=2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=2-\sqrt{3}+\sqrt{3}-1=1\)

\(b)\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)

\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{33-2.3.\sqrt{4}.\sqrt{6}}\)

\(=3-\sqrt{6}+\sqrt{33-2.3.\sqrt{24}}\)

\(=3-\sqrt{6}+\sqrt{\left(\sqrt{24}-3\right)^2}\)

\(=3-\sqrt{6}+\sqrt{24}-3\)

\(=\sqrt{24}-\sqrt{6}\)

\(=\sqrt{6}\left(2-1\right)=\sqrt{6}\)

\(c)\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}+\sqrt{\frac{3+\sqrt{5}}{3-\sqrt{5}}}\)

\(=\sqrt{\frac{\left(3-\sqrt{5}\right)^2}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}}+\sqrt{\frac{\left(3+\sqrt{5}\right)^2}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}}\)

\(=\sqrt{\frac{\left(3-\sqrt{5}\right)^2}{4}}+\sqrt{\frac{\left(3+\sqrt{5}\right)^2}{4}}\)

\(=\frac{3-\sqrt{5}}{2}+\frac{3+\sqrt{5}}{2}\)

\(=\frac{6}{2}=3\)

\(d)\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\)

\(=\frac{\left(\sqrt{7}+\sqrt{5}\right)^2+\left(\sqrt{7}-\sqrt{5}\right)^2}{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}\)

\(=\frac{24}{2}=12\)