\(\frac{3x}{5}=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+\frac{1}{4.5.6}+\frac{1}{5.6.7}+\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2019

\(\frac{3x}{5}=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{6.7.8}\)

Ta có: \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{6.7.8}\)

      \(=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{6.7.8}\right)\)

      \(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{6.7}-\frac{1}{7.8}\right)\)

      \(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{7.8}\right)\)

      \(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{56}\right)\)

      \(=\frac{1}{2}.\frac{27}{56}=\frac{27}{112}\)

\(\frac{3x}{5}=\frac{27}{112}\)

\(\Rightarrow3x=\frac{27.5}{112}\)

\(\Rightarrow3x=\frac{135}{112}\)

\(\Rightarrow x=\frac{45}{112}\)

~Học tốt~

1 tháng 3 2016

1/2x3x4 + 1/3x4x5 + 1/4x5x6 + 1/5x6x7 + ..... + 1/8x9x10

= { 2/2x3x4 + 2/3x4x5 + 2/4x5x6 + .... + 2/8x9x10 } : 2

= { 4-2/2x3x4 + 5-3/3x4x5 + 6-4/4x5x6 + .... + 10-8/8x9x10 } : 2

= { 4/2x3x4 - 2/2x3x4 + 5/3x4x5 - 3/3x4x5 + ... + 10/8x9x10 - 8/8x9x10 } : 2

= { 1/2x3 - 1/3x4 + 1/3x4 - 1/4x5 + ... + 1/8x9 - 1/9x10 } : 2

=  { 1/2x3 - 1/9x10 } :2

=  { 1/6 - 1/90 } : 2

= 14/90 :  2

= 7/90

10 tháng 8 2016

\(2S=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(2S=\frac{1}{2}-\frac{1}{9900}\)

\(2S=\frac{4949}{9900}\)

\(S=\frac{4949}{19800}\)

11 tháng 8 2016

Ta xét : \(\frac{1}{1.2}-\frac{1}{2.3}=\frac{2}{1.2.3}\)

\(\frac{1}{2.3}-\frac{1}{3.4}=\frac{2}{2.3.4}\)

...

\(\frac{1}{98.99}-\frac{1}{99.100}=\frac{2}{98.99.100}\)

Ta có : 2S = \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

=> 2S = \(\frac{1}{1.2}-\frac{1}{99.100}\)

=> 2S = \(\frac{4949}{9900}\)

=> S = \(\frac{4949}{19800}\)

23 tháng 3 2017

Ta có A = \(\frac{1.2.3-2.3.4+3.4.5-4.5.6+5.6.7-6.7.8}{2.4.6-4.6.8+6.8.10-8.10.12+10.12.14-12.14.16}\)

       A = \(\frac{1.2.3-2.3.4+3.4.5-4.5.6+5.6.7-6.7.8}{\left(1.2.3\right).2-\left(2.3.4\right).2+\left(3.4.5\right).2-\left(4.5.6\right).2+\left(5.6.7\right).2-\left(6.7.8\right).2}\)

       A = \(\frac{1.\left(1.2.3-2.3.4+3.4.5-4.5.6+5.6.7-6.7.8\right)}{2.\left(1.2.3-2.3.4+3.4.5-4.5.6+5.6.7-6.7.8\right)}\)

        A = \(\frac{1}{2}\)

6 tháng 7 2016

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{4.5.6}+....+\frac{1}{98.99.100}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{100}\)

\(=\frac{1}{1}-\frac{1}{100}\)

\(=\frac{99}{100}\)

6 tháng 7 2016

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)

\(=\frac{1}{2}.\frac{4949}{9900}\)

\(=\frac{1}{19800}\)

Đặt A=\(\frac{-1}{2\cdot3\cdot4}\)+\(\frac{-1}{3\cdot4\cdot5}\)+...+\(\frac{-1}{12\cdot13\cdot14}\)

        A=(-1)*(\(\frac{1}{2\cdot3\cdot4}\)+\(\frac{1}{3\cdot4\cdot5}\)+...+\(\frac{1}{12\cdot13\cdot14}\))

        A=\(\frac{-1}{2}\)*(\(\frac{2}{2\cdot3\cdot4}\)+\(\frac{2}{3\cdot4\cdot5}\)+...+\(\frac{2}{12\cdot13\cdot14}\))

        A=\(\frac{-1}{2}\)*(\(\frac{1}{2\cdot3}\)-\(\frac{1}{3\cdot4}\)+\(\frac{1}{3\cdot4}\)-\(\frac{1}{4\cdot5}\)+...+\(\frac{1}{12\cdot13}\)-\(\frac{1}{13\cdot14}\))

       A=\(\frac{-1}{2}\)*(\(\frac{1}{6}\)-\(\frac{1}{182}\))

       A=\(\frac{-1}{2}\)*\(\frac{44}{273}\)

       A=\(\frac{-22}{273}\)

9 tháng 5 2016

\(\frac{-1}{2.3.4}+\frac{-1}{3.4.5}+\frac{-1}{4.5.6}+...+\frac{-1}{11.12.13}+\frac{-1}{12.13.14}\)

\(=-\frac{1}{2}.\left(\frac{2}{2.3.4}+\frac{2}{3.4.5}+\frac{2}{4.5.6}+...+\frac{2}{11.12.13}+\frac{2}{12.13.14}\right)\)

\(=-\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+\frac{1}{4.5}-\frac{1}{5.6}+...+\frac{1}{11.12}-\frac{1}{12.13}+\frac{1}{12.13}-\frac{1}{13.14}\right)\)

\(=-\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{13.14}\right)=-\frac{1}{2}.\frac{44}{273}=-\frac{22}{273}\)

11 tháng 4 2019

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)

\(=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)

\(=\frac{1}{2}.\frac{4949}{9900}\)

\(=\frac{4949}{19800}\)

6 tháng 7 2016

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{4.5.6}+....+\frac{1}{98.99.100}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{100}\)

\(=\frac{1}{1}-\frac{1}{100}\)

\(=\frac{99}{100}\)

6 tháng 7 2016

=24497550

15 tháng 5 2019

\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{2018\cdot2019\cdot2020}\)

\(=\frac{1}{2}\left[\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{2018\cdot2019\cdot2020}\right]\)

\(=\frac{1}{2}\left[\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{2018\cdot2019}-\frac{1}{2019\cdot2020}\right]\)

Đến đây tự tính được rồi:v

15 tháng 5 2019

   Đặt tổng trên là A

Ta có:

\(2A=2\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{2018\cdot2019\cdot2020}\right)\)

\(=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{2018\cdot2019\cdot2020}\)

\(=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{2018\cdot2019}-\frac{1}{2019\cdot2020}\)

\(=\frac{1}{2}-\frac{1}{2019\cdot2020}\)

\(A=\left(\frac{1}{2}-\frac{1}{2019\cdot2020}\right)\div2\)

        *Làm tiếp*

                                          \(#Louis\)