\(\frac{2}{a+b\sqrt{5}}+\frac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2020

ĐK: \(a\ne\pm b\sqrt{5}\)(*)

\(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)

\(\Leftrightarrow2\left(a-b\sqrt{5}\right)-3\left(a+b\sqrt{5}\right)=-\left(9+20\sqrt{5}\right)\left(a+b\sqrt{5}\right)\left(a-b\sqrt{5}\right)\)

\(\Leftrightarrow9a^2-45b^2-a=\sqrt{5}\left(-20a^2+100b^2+5b\right)\)(*)

Ta thấy (*) có dạng \(A=B\sqrt{5}\)nếu \(B\ne0\)thì \(\sqrt{5}=\frac{A}{B}\in Z\)(vô lý) Vậy B=0 => A=0

Do đó: (*) \(\Leftrightarrow\hept{\begin{cases}9a^2-45b^2-a=0\\-20a^2+100b^2+5b=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}9a^2-45b^2-a=0\\-9a^2+45b^2+\frac{9}{4}b=0\end{cases}\Leftrightarrow\hept{\begin{cases}9a^2-45b^2-a=0\\a=\frac{9}{4}b\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}a=\frac{9}{4}b\\b^2-4b=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=9\\b=4\end{cases}}}\)hoặc \(\hept{\begin{cases}a=0\\b=0\end{cases}}\)( Loại vì không thoả mãn đk (*))

=> a=9;b=4.

a) \(\left(2-\frac{a-3.\sqrt{a}}{\sqrt{a}-3}\right).\left(2-\frac{5.\sqrt{a}+\sqrt{a}.b}{\sqrt{b}-5}\right)\)

=\(\left(2-\frac{\sqrt{a}\left(\sqrt{a}-3\right)}{\sqrt{a}-3}\right)\left(2+\frac{\sqrt{a}\left(5-\sqrt{b}\right)}{5-\sqrt{b}}\right)\)

=\(\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)\)

=4-a ( Bạn xem lại đề bài giúp mình )

b)\(\frac{9-a}{\sqrt{a}+3}-\frac{9-6\sqrt{a}+a}{\sqrt{a}-3}\) -6

=\(\frac{\left(3-\sqrt{a}\right)\left(3+\sqrt{a}\right)}{\sqrt{a}+3}+\frac{\left(3-\sqrt{a}\right)^2}{3-\sqrt{a}}-6\)

=\(3-\sqrt{a}+3-\sqrt{a}-6\)

=-2\(\sqrt{a}\)