Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c, \(\frac{-32}{-2^n}=4\)
\(\Rightarrow-2^n=-32:4\)
\(\Rightarrow-2^n=-8\)
\(\Rightarrow-2^n=-2^3\Rightarrow n=3\)
d, \(\frac{8}{2^n}=2\)
\(\Rightarrow2^n=8:2\)
\(\Rightarrow2^n=4\)
\(\Rightarrow2^n=2^2\Rightarrow n=2\)
e, \(\frac{25^3}{5^n}=25\)
\(\Rightarrow5^n=25^3:25\)
\(\Rightarrow5^n=25^2\)
\(\Rightarrow5^n=5^4\Rightarrow n=4\)
i , \(8^{10}:2^n=4^5\)
\(\Rightarrow2^n=8^{10}:4^5\)
\(\Rightarrow2^n=\left(2^3\right)^{10}:\left(2^2\right)^5\)
\(\Rightarrow2^n=2^{30}:2^{10}\)
\(\Rightarrow2^n=2^{20}\Rightarrow n=20\)
k, \(2^n.81^4=27^{10}\)
\(\Rightarrow2^n=27^{10}:81^4\)
\(\Rightarrow2^n=\left(3^3\right)^{10}:\left(3^4\right)^4\)
\(\Rightarrow2^n=3^{30}:3^{16}\)
\(\Rightarrow2^n=3^{14}\)
\(\Rightarrow2^n=4782969\)Không chia hết cho 2 nên ko có Gt n thỏa mãn
a) \(\frac{-32}{\left(-2\right)^n}=4\)
\(\frac{\left(-2\right)^5}{\left(-2\right)^n}=4\)
\(\left(-2\right)^{5-n}=\left(-2\right)^2\)
=> 5-n = 2
n = 3
b) \(\frac{8}{2^n}=2\)
\(\frac{2^3}{2^n}=2\)
\(2^{3-n}=2^1\)
=> 3 -n = 1
n = 2
c) \(\left(\frac{1}{2}\right)^{2n-1}=\frac{1}{8}\)
\(\left(\frac{1}{2}\right)^{2n-1}=\left(\frac{1}{2}\right)^3\)
=> 2n -1 = 3
2n = 4
n = 2
a) \(\frac{-32}{\left(-2\right)^n}=4\Leftrightarrow\left(-2\right)^n=\frac{-32}{4}\)
\(\left(-2\right)^n=-8\)Mà \(-8=2^{-3}\)
\(\Rightarrow x=-3\)
b) \(\frac{8}{2^n}=2\Leftrightarrow2^n=\frac{8}{2}\)
\(2^n=4\) Mà \(4=2^2\Rightarrow x=2\)
c) \(\left(\frac{1}{2}\right)^{2n-1}=\frac{1}{8}\Rightarrow\left(\frac{1}{2}\right)^{2n}:\frac{1}{2}=\frac{1}{8}\)
\(\left(\frac{1}{2}\right)^{2n}=\frac{1}{8}\cdot\frac{1}{2}\)
\(\left(\frac{1}{2}\right)^{2n}=\frac{1}{16}\Leftrightarrow\frac{1}{2^{2n}}=\frac{1}{16}\) mà\(16=2^4\)
\(2n=4\Rightarrow n=2\)
Vậy .........................
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{n\left(n+1\right)}=\frac{49}{50}\)
\(\Rightarrow\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{n\left(n+1\right)}=\frac{49}{50}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{49}{50}\)
\(\Rightarrow1-\frac{1}{n+1}=\frac{49}{50}\)
\(\Rightarrow\frac{1}{n+1}=\frac{1}{50}\)
\(\Rightarrow n+1=50\)
\(\Rightarrow n=49\)
\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{50}{51}\)
\(\Rightarrow\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{50}{51}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2n-1}-\frac{1}{2n+1}=\frac{50}{51}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{2n+1}=\frac{50}{51}\)
\(\Rightarrow\frac{1}{2n+1}=\frac{1}{51}\)
\(\Rightarrow2n+1=51\)
\(\Rightarrow2n=50\)
\(\Rightarrow n=25\)
Bạn tham khảo cách làm ở đây: https://olm.vn/hoi-dap/question/528628.html
\(\frac{1^{2n-1}}{2}=\frac{1}{8}\)
\(1^{2n-1}=1\cdot2:8\)
\(1^{2n-1}=\frac{1}{4}\) ( vô lí vì \(1^{2n-1}=1\forall n\)
Vậy không có n thỏa mãn
\(\frac{1^{2n-1}}{2}=\frac{1}{8}\)
\(\Leftrightarrow\frac{4.\left(1^{2n-1}\right)}{8}=\frac{1}{8}\)
\(\Leftrightarrow1^{2n-1}=\frac{1}{4}\)
\(\Leftrightarrow1^{2n}=\frac{1}{4}\)
\(\Leftrightarrow1^n.1^2=\frac{1}{4}\)
\(\Leftrightarrow n=-4\)