Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(\(\frac{1}{2}\):\(\frac{1}{3}\):\(\frac{1}{6}\)) +\(\frac{1}{5}\)
= 9 + \(\frac{1}{5}\)
=\(\frac{46}{5}\)
K minh nhe ban
\(\frac{1}{2}:\frac{1}{5}+\frac{1}{3}:\frac{1}{5}+\frac{1}{6}:\frac{1}{5}\)
\(=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right):\frac{1}{5}\)
\(=\left(\frac{3}{6}+\frac{2}{6}+\frac{1}{6}\right):\frac{1}{5}\)
\(=1:\frac{1}{5}\)
\(=1\times5\)
\(=5\)
\(\frac{2}{5}=\frac{4}{10}\)
\(\frac{12}{30}=\frac{4}{10}\)
\(\frac{72}{45}=\frac{8}{5}\)
\(\frac{1}{4}=\frac{7}{28}\)
\(\frac{1}{2}:\frac{3}{2}:\frac{5}{4}:\frac{6}{5}:\frac{7}{6}:\frac{8}{7}\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{5}{6}\cdot\frac{6}{7}\cdot\frac{7}{8}\)
\(=\frac{1\cdot\left(2\cdot5\cdot6\cdot7\right)}{8\cdot3\cdot\left(2\cdot5\cdot6\cdot7\right)}\)
\(=\frac{1}{24}\)
\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot\frac{5}{6}\cdot\frac{6}{7}\cdot\frac{7}{8}\cdot\frac{8}{9}\cdot\frac{9}{10}\)
\(=\frac{1\cdot\left(2\cdot3\cdot4\cdot5\cdot6\cdot7\cdot8\cdot9\right)}{\left(2\cdot3\cdot4\cdot5\cdot6\cdot7\cdot8\cdot9\right)\cdot10}\)
\(=\frac{1}{10}\)
\(\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times\left(1-\frac{1}{5}\right)\times\left(1-\frac{1}{6}\right)\times\left(1-\frac{1}{7}\right)\times\left(1-\frac{1}{8}\right)-\frac{1}{4}\times\frac{1}{2}\)
\(=\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}\times\frac{5}{6}\times\frac{6}{7}\times\frac{7}{8}-\frac{1}{4}\times\frac{1}{2}\)
\(=\frac{2}{8}-\frac{1}{4}\times\frac{1}{2}\)
\(=\frac{2}{8}-\frac{1}{8}=\frac{1}{8}\)
Tính nhanh:
\(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\)\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}\)
\(=\left(\frac{1}{1}+\frac{1}{9}\right)+\left(\frac{1}{2}+\frac{1}{8}\right)\)\(+\left(\frac{1}{3}+\frac{1}{7}\right)+\left(\frac{1}{4}+\frac{1}{6}\right)+\frac{1}{5}\)
\(=\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{5}\)
\(=\frac{4}{10}+\frac{2}{5}=\frac{2}{5}+\frac{1}{5}=\frac{3}{5}\)
tks giúp mk nha! cảm ơn nhiều ạ...
Đặt \(A=2-1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
\(=2-\frac{1}{9}=\frac{18}{9}-\frac{1}{9}=\frac{17}{9}\)
Ta có:
\(\left(\frac{1}{21}+\frac{1}{210}+\frac{1}{2010}\right)\)\(\times\)\(\left(\frac{1}{3}-\frac{1}{30}-\frac{1}{5}-\frac{1}{10}\right)\)
= \(\left(\frac{1}{21}+\frac{1}{210}+\frac{1}{2010}\right)\)\(\times\)\(\left(\frac{10}{30}-\frac{1}{30}-\frac{6}{30}-\frac{3}{30}\right)\)
= \(\left(\frac{1}{21}+\frac{1}{210}+\frac{1}{2010}\right)\)\(\times\)\(\left(\frac{10-1-6-3}{30}\right)\)
= \(\left(\frac{1}{21}+\frac{1}{210}+\frac{1}{2010}\right)\)\(\times\)\(0\)
= \(0\)
ta có \(\frac{1}{3}-\frac{1}{30}-\frac{1}{5}-\frac{1}{10}=\frac{10-1-6-3}{30}=\frac{0}{30}=0\)
=>\(\left(\frac{1}{21}+\frac{1}{210}+\frac{1}{2010}\right)x\left(\frac{1}{3}-\frac{1}{30}-\frac{1}{5}-\frac{1}{10}\right)=0\)