\(\frac{1}{1.3}\)+\(\frac{1}{3.5}\)+\(\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2016

\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{47}-\frac{1}{49}\right)=\frac{1}{x}\)

\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{49}\right)=\frac{1}{x}\Rightarrow x=\frac{49}{24}\)

\(\frac{1}{2}.\left(1-\frac{1}{3}\right)+\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)+...+\frac{1}{2}.\left(\frac{1}{47}-\frac{1}{49}\right)=\frac{1}{x}\)

\(\frac{1}{2}.\left(1-\frac{1}{49}\right)=\frac{1}{x}\)

\(\frac{24}{49}=\frac{1}{x}\)\(\Rightarrow x=\frac{49}{24}\)

29 tháng 8 2016

A = 1/1.3 + 1/3.5 + 1/5.7 +........+ 1/1999.2001
2.A = 2/1.3 + 2/3.5 + 2/5.7 +........+ 2/1999.2001
2.A = 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/1999 - 1/2001 
2.A = 1 - 1/2001 

2.A = 2000/2001

Vậy A =1000/2001

B = 1/3.5 + 1/5.7 + 1/7.9 +........+ 1/99.101
2.A = 2/3.5 + 2/5.7 + 2/7.9 +........+ 2/99.101
2.A = 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/99 - 1/101 
2.A = 1/3 - 1/101 = 98/303 
Vậy A =49/303

29 tháng 8 2016

\(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{1999.2001}\)

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+....+\frac{2}{1999.2001}\)

\(2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{1999}-\frac{1}{2001}\)

\(2A=\frac{1}{1}-\frac{1}{2001}=\frac{2000}{2001}\)

\(A=\frac{2000}{2001}.\frac{1}{2}=\frac{1000}{2001}\)

23 tháng 1 2017

a, \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)

=2.(\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\))

=\(2.\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

=\(\frac{2}{2}.\left(1-\frac{1}{101}\right)\)

\(=\frac{100}{101}\)

b, \(\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)

=\(5.\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right)\)

=\(5.\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\left(1-\frac{1}{101}\right)\)

=\(\frac{250}{101}\)

\(=\frac{5}{2}.\frac{100}{101}\)

3 tháng 5 2019

a,21.321.3+23.523.5+25.725.7+....+299.101

=>\(\frac{1}{1}-\frac{1}{3}+\frac{1}{5}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{101}\)

=>\(\frac{1}{1}-\frac{1}{101}\)

=>\(\frac{100}{101}\)

b,

51.351.3+53.553.5+55.755.7+....+599.101

=>\(\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+....+\frac{2}{99.101}\right)\)

=>\(\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{101}\right)\)

=>\(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{101}\right)\)

=>\(\frac{5}{2}.\frac{100}{101}\)

=>\(\frac{250}{101}\)

9 tháng 5 2019

\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{x(x+2)}=\frac{20}{41}\)

\(\Rightarrow\frac{1}{2}\left[\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{x(x+2)}\right]=\frac{20}{41}\)

\(\Rightarrow\frac{1}{2}\left[1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\right]=\frac{20}{41}\)

\(\Rightarrow\frac{1}{2}\left[1-\frac{1}{x+2}\right]=\frac{20}{41}\)

\(\Rightarrow1-\frac{1}{x+2}=\frac{20}{41}:\frac{1}{2}\)

\(\Rightarrow1-\frac{1}{x+2}=\frac{40}{41}\)

\(\Rightarrow\frac{1}{x+2}=1-\frac{40}{41}\)

\(\Rightarrow\frac{1}{x+2}=\frac{1}{41}\Leftrightarrow x+2=41\Leftrightarrow x=39\)

9 tháng 5 2019

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{20}{41}.\)

\(1-\frac{1}{x+2}=\frac{20}{41}\Rightarrow\frac{1}{x+2}=\frac{21}{41}=\frac{21}{21x+42}\Rightarrow21x+42=41\Rightarrow x=-\frac{1}{21}\)

8 tháng 6 2017

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)

Đặt A = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)

\(2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)

\(2A=\frac{1}{1}-\frac{1}{101}\)

\(2A=\frac{100}{101}\)

\(\Rightarrow A=\frac{100}{101}\div2\)

\(\Rightarrow A=\frac{50}{101}\)

8 tháng 6 2017

đề 

sai r bn ak

27 tháng 4 2017

\(\Rightarrow A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+......+\frac{1}{2013}-\frac{1}{2015}\right)\)

\(\Rightarrow A=\frac{1}{2}\left(1-\frac{1}{2015}\right)\)

\(\Rightarrow A=\frac{1}{2}.\frac{2014}{2015}=\frac{1007}{2015}\)

10 tháng 7 2019

Bạn gõ lại đề đi :v

Đọc chả hiểu đề gì cả ... đề k có x

Mà phía dưới có cái đáp số x= ... là sao ??

10 tháng 7 2019

a)(\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{11.12}\)). x=\(\frac{1}{3}\)

(1-\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{11}_{ }+\frac{1}{12}\)).x=\(\frac{1}{3}\)

(1+\(\frac{1}{12}\)).x=\(\frac{1}{3}\)

x=\(\frac{1}{3}:\frac{13}{12}\)

x=\(\frac{4}{13}\)

12 tháng 8 2020

TA CÓ THỂ THẤY, VẾ TRÁI CÓ: 12 CẶP

=>   \(12x+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)=11x+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)

<=>  \(x+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)       (****)

Ta xét:    \(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\)

=>   \(2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{23.25}\)

=>   \(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}\)

=>   \(2A=1-\frac{1}{25}=\frac{24}{25}\)

=>   \(A=\frac{12}{25}\)

Ta tiếp tục xét:      \(B=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)

=>   \(3B=1+\frac{1}{3}+...+\frac{1}{3^4}\)

=>   \(3B-B=\left(1+\frac{1}{3}+...+\frac{1}{3^4}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\right)\)

=>   \(2B=1-\frac{1}{3^5}=\frac{242}{243}\)

=>   \(B=\frac{121}{243}\)

THAY CÁC GIÁ TRỊ A; B VÀO PT (****) TA ĐƯỢC: 

=>   \(x+\frac{12}{25}=\frac{121}{243}\)

<=>   \(x=\frac{121}{243}-\frac{12}{25}=\frac{109}{6075}\)

26 tháng 3 2017

a = 1

+ các phân số lại sẽ có 1 

tk cho mk , mk tk  lại

26 tháng 3 2017

A=1/3 - 1/103=(103-3)/3.103=100/309