Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\frac{x+1}{2x-2}+\frac{x^2+3}{2-2x^2}\)
\(=\frac{-4x^2+8x-4}{-4x^3+4x^2+4x-4}\)
\(=\frac{-x^2+2x-1}{-x^3+x^2+x-1}\)
\(=\frac{\left(-x+1\right)\left(x-1\right)}{\left(-x-1\right)\left(x-1\right)\left(x-1\right)}\)
\(=\frac{1}{x+1}\)
2) \(\frac{1-2x}{2x}+\frac{2x}{2x-1}+\frac{1}{2x-4x^2}\)
\(=\frac{-16x^3+16x^2-4x}{-16x^4+16x^3-4x^2}\)
\(=\frac{-16x^2+16x-4}{-16x^3+16x^2-4x}\)
\(=\frac{-4x^2+4x-1}{-4x^3+4x^2-x}\)
\(=\frac{\left(-2x+1\right)\left(2x-1\right)}{x\left(-2x+1\right)\left(2x-1\right)}\)
\(=\frac{1}{x}\)
\(a,\frac{2x+4}{10}+\frac{2-x}{15}=\frac{\left(2x+4\right).3}{10.3}+\frac{\left(2-x\right).2}{15.2}\)
\(=\frac{6x+12}{30}+\frac{4-2x}{30}=\frac{6x+12+4-2x}{30}=\frac{4x+16}{30}\)
\(=\frac{4.\left(x+4\right)}{30}=\frac{2\left(x+4\right)}{15}\)
\(b,\frac{3x}{10}+\frac{2x-1}{15}+\frac{2-x}{20}=\frac{3x.6}{10.6}+\frac{\left(2x-1\right).4}{15.4}+\frac{\left(2-x\right).3}{20.3}\)
\(=\frac{18x}{60}+\frac{8x-4}{60}+\frac{6-3x}{60}=\frac{18x+8x-4+6-3x}{60}=\frac{23x+2}{60}\)
\(c,\frac{x+1}{2x-2}+\frac{x^2+3}{2-2x^2}=\frac{x+1}{2\left(x-1\right)}+\frac{x^2+3}{2\left(1-x^2\right)}=\frac{x+1}{2\left(x-1\right)}+\frac{-x^2-3}{2\left(x^2-1\right)}\)
\(=\frac{x+1}{2\left(x-1\right)}+\frac{-x^2-3}{2\left(x-1\right)\left(x+1\right)}\)\(=\frac{\left(x+1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}+\frac{-x^2-3}{2\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2+2x+1-x^2-3}{2\left(x-1\right)\left(x+1\right)}=\frac{2x-2}{2\left(x-1\right)\left(x+1\right)}=\frac{2\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\)\(=\frac{1}{x+1}\)
\(\frac{1}{x}-\frac{1}{x+1}=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x^2+x}\)
b, \(\frac{1}{xy-x^2}-\frac{1}{y^2-xy}=\frac{y^2-xy-xy+x^2}{\left(xy-x^2\right)\left(y^2-xy\right)}=\frac{x^2+y^2}{xy^3-xyxy-xyxy+x^3y}\)Tu rut gon tiep
c, tt
d, cx r
a) \(\frac{1}{x}-\frac{1}{x+1}=\frac{x+1}{x\left(x+1\right)}-\frac{x}{x\left(x+1\right)}\)
\(=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\)
b) \(\frac{1}{xy-x^2}-\frac{1}{y^2-xy}=\frac{1}{x\left(y-x\right)}-\frac{1}{y\left(y-x\right)}\)
\(=\frac{y}{xy\left(y-x\right)}-\frac{x}{xy\left(y-x\right)}=\frac{y-x}{xy\left(y-x\right)}=\frac{1}{xy}\)
c) \(\frac{9x-3}{4x-1}-\frac{3x}{1-4x}=\frac{9x-3}{4x-1}+\frac{3x}{4x-1}\)
\(=\frac{9x-3+3x}{4x-1}=\frac{6x-3}{4x-1}\)
\(\frac{4}{2x+3}-\frac{7}{3x-5}=0\left(đkxđ:x\ne-\frac{3}{2};\frac{5}{3}\right)\)
\(< =>\frac{4\left(3x-5\right)}{\left(2x+3\right)\left(3x-5\right)}-\frac{7\left(2x+3\right)}{\left(2x+3\right)\left(3x-5\right)}=0\)
\(< =>12x-20-14x-21=0\)
\(< =>2x+41=0< =>x=-\frac{41}{2}\left(tm\right)\)
\(\frac{4}{2x-3}+\frac{4x}{4x^2-9}=\frac{1}{2x+3}\left(đk:x\ne-\frac{3}{2};\frac{3}{2}\right)\)
\(< =>\frac{4\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}+\frac{4x}{\left(2x-3\right)\left(2x+3\right)}-\frac{2x-3}{\left(2x+3\right)\left(2x-3\right)}=0\)
\(< =>8x+12+4x-2x+3=0\)
\(< =>10x=15< =>x=\frac{15}{10}=\frac{3}{2}\left(ktm\right)\)
\(\frac{1-2x}{2x}+\frac{2x}{2x-1}+\frac{1}{2x-4x^2}\)
\(=\frac{1}{2x}-1+1+\frac{1}{2x-1}+\frac{1}{2x\left(1-2x\right)}=\frac{1-2x}{2x\left(1-2x\right)}-\frac{2x}{2x\left(1-2x\right)}+\frac{1}{2x\left(1-2x\right)}\)
\(=\frac{1-2x-2x+1}{2x\left(1-2x\right)}=\frac{2}{2x\left(1-2x\right)}=\frac{1}{x\left(1-2x\right)}\)
Ta có: \(\frac{1-2x}{2x}+\frac{2x}{2x-1}+\frac{1}{2x-4x^2}\)
= \(\frac{1-2x}{2x}+\frac{2x}{2x-1}-\frac{1}{2x\left(2x-1\right)}\)
= \(\frac{\left(1-2x\right)\left(2x-1\right)}{2x\left(2x-1\right)}+\frac{2x.2x}{2x\left(2x-1\right)}-\frac{1}{2x\left(2x-1\right)}\)
= \(\frac{-\left(4x^2-4x+1\right)}{2x\left(2x-1\right)}+\frac{4x^2}{2x\left(2x-1\right)}-\frac{1}{2x\left(2x-1\right)}\)
= \(\frac{-4x^2+4x-1+4x^2-1}{2x\left(2x-1\right)}\)
= \(\frac{4x-2}{2x\left(2x-1\right)}\)
= \(\frac{2\left(2x-1\right)}{2x\left(2x-1\right)}=\frac{1}{x}\)
1,\(\frac{3}{2x+6}-\frac{x-6}{x\left(2x+6\right)}\)
=\(\frac{3x}{x\left(2x+6\right)}+\frac{x-6}{x\left(2x+6\right)}\)
=\(\frac{3x+x-6}{x\left(2x+6\right)}\)=\(\frac{4x-6}{x\left(2x+6\right)}=\frac{2\left(2x-3\right)}{x\left(2x+6\right)}\)
Đề là rút gọn? Điều kiện: x khác o và x khác 1/2
\(\frac{1-2x}{2x}+\frac{2x}{2x-1}+\frac{1}{2x\left(1-2x\right)}=\frac{\left(1-2X\right)\left(2x-1\right)}{2x.\left(2x-1\right)}+\frac{2x.2x}{\left(2x-1\right).2x}-\frac{1}{2x\left(2x-1\right)}=\)
\(=\frac{-\left(2x-1\right)^2+4x^2-1}{2x\left(2x-1\right)}=\frac{4x-2}{2x\left(2x-1\right)}=\frac{2\left(2x-1\right)}{2x\left(2x-1\right)}=\frac{1}{x}\)