Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các n thỏa mãn\(\hept{\begin{cases}n\inℤ\\n>1\end{cases}}\)
bởi \(A=\frac{2\sqrt{n-1}}{\sqrt{n-1}}=2\)không phụ thuộc vào giá trị của biến nên chỉ cần điều kiện xác định của phân thức và căn bậc hai thôi.
Gọi biểu thức trên là A
Ta có
\(A=\frac{n^3-2n^2+3}{n-2}\)
\(A=\frac{n^2\left(n-2\right)+3}{n-2}\)
Để \(A\in Z\Leftrightarrow\left(n-2\right)\in U\left(3\right)\)
Vậy ta có:
\(n-2=-3\\ \Rightarrow n=-1\)
\(n-2=-1\\ \Rightarrow n=1\)
\(n-2=1\\ \Rightarrow n=3\)
\(n-2=3\\ \Rightarrow n=5\)
a) 3^1=3
3^4=81
3^5=243
vậy n=1 đến 5
b)2^(2n-3).2^(8-2n)=2^[2n-3+(8-2n)]=2^(2n-3+8-2n)=2^5
16=2^4<2^n<2^5
n= không có
A! Bạn ơi! Bạn có thể giải thích câu a đc hong. Mình không hiểu cho lắm...
Ta có:
\(\frac{x}{2}-\frac{3}{y}=\frac{5}{4}\)
hay \(\frac{2x}{4}-\frac{3}{y}=\frac{5}{4}\)
Suy ra \(\frac{3}{y}=\frac{2x-5}{4}\)
\(\Rightarrow3\cdot4=\left(2x-5\right)y\)
hay \(\left(2x-5\right)y=12\)
Đến đây bạn tự lập bảng giá trị nhé!
Ta có \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\)
=> \(\frac{xyz}{xz+yz}=\frac{xyz}{xy+xz}=\frac{xyz}{xy+yz}\)
=> \(xz+yz=xy+xz=xy+yz\)(vì x ; y ;z \(\ne0\Leftrightarrow xyz\ne0\))
=> \(\hept{\begin{cases}xz+yz=xy+xz\\xy+xz=xy+yz\\xz+yz=xy+yz\end{cases}}\Rightarrow\hept{\begin{cases}yz=xy\\xz=yz\\xz=xy\end{cases}}\Rightarrow\hept{\begin{cases}z=x\\x=y\\y=z\end{cases}}\Rightarrow x=y=z\)
Khi đó M = \(\frac{x^2+y^2+z^2}{xy+yz+zx}=\frac{x^2+y^2+z^2}{x^2+y^2+z^2}=1\left(\text{vì }x=y=z\right)\)