K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2018

Ta biết tập nghiệm của phương trình ax + by = c được biểu diễn bằng đường thẳng ax + by = c và tập nghiệm của phương trình a'x + b'y = c' được biểu diễn bằng đường thẳng a'x + b'y = c'.

Giải bài 3 trang 25 SGK Toán 9 Tập 2 | Giải toán lớp 9

7 tháng 5 2017

Ta biết tập nghiệm của phương trình ax + by = c được biểu diễn bằng đường thẳng ax + by = c và tập nghiệm của phương trình a'x + b'y = c' được biểu diễn bằng đường thẳng a'x + b'y = c'.

Giải bài 3 trang 25 SGK Toán 9 Tập 2 | Giải toán lớp 9

22 tháng 6 2019

Xét các trường hợp:

1. a, b, a’, b’ ≠ 0

Ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Hệ phương trình có vô số nghiệm khi hai đường thẳng trùng nhau. Nghĩa là hai đường thẳng có hệ số góc và tung độ gốc bằng nhau:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

*a = 0, a’ ≠ 0

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì hai đường thẳng Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 luôn luôn cắt trục hoành còn đường thẳng y = c/b song song hoặc trùng với trục hoành nên chúng luôn luôn cắt nhau.

Vậy hệ phương trình chỉ có một nghiệm duy nhất.

*a = a’ = 0

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Hệ có vô số nghiệm khi hai đường thẳng trùng nhau, nghĩa là:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Hệ vô nghiệm khi hai đường thẳng song song nhau, nghĩa là:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

*b = 0, b’ ≠ 0

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì hai đường thẳng Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9luôn luôn cắt trục tung còn đường thẳng x = c/a song song hoặc trùng với trục tung nên chúng luôn luôn cắt nhau.

Vậy hệ phương trình chỉ có một nghiệm duy nhất.

*b = b’ = 0

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Hệ có vô số nghiệm khi hai đường thẳng trùng nhau, nghĩa là:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Hệ vô nghiệm khi hai đường thẳng song song nhau, nghĩa là:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Áp dụng:

Hệ hai phương trình bậc nhất hai ẩn có vô số nghiệm:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 nên hệ phương trình có vô số nghiệm

18 tháng 9 2019

Xét các trường hợp:

1. a, b, a’, b’ ≠ 0

Ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Hệ phương trình vô nghiệm khi hai đường thẳng song song nhau. Nghĩa là hai đường thẳng có hệ số góc bằng nhau và tung độ gốc khác nhau:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Áp dụng:

Hệ hai phương trình bậc nhất hai ẩn vô nghiệm:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 nên hệ phương trình trên vô nghiệm

25 tháng 11 2017

Xét các trường hợp:

1. a, b, a’, b’ ≠ 0

Ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Hệ phương trình có một nghiệm duy nhất khi hai đường thẳng cắt nhau. Nghĩa là hai đường thẳng có hệ số góc khác nhau:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Áp dụng:

Hệ hai phương trình bậc nhất hai ẩn vô nghiệm:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 nên hệ phương trình trên vô nghiệm

27 tháng 8 2020

Ta có:

\(\Delta_1+\Delta_2+\Delta_3=a^2-4b+b^2-4c+c^2-4a=a^2+b^2+c^2-48\)

Dễ thấy:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=48\Rightarrow\Delta_1+\Delta_2+\Delta_3\ge0\)

Khi đó có ít nhất một phương trình có nghiệm

27 tháng 8 2020

còn c/m vô nghiệm thế nào z

4 tháng 1 2018

với m = 0 \Rightarrow ∫y=104x=4∫x=4y=104

với m khác 0 \Rightarrow ∫x+my=4mx+4y=10−m∫mx+4y=10−mx+my=4

\Leftrightarrow ∫y=5m+2x=−m+8m+2∫x=−m+8m+2y=5m+2

b. vì x >0 , y>0 \Rightarrow ∫y=5m+2>0x=−m+8m+2>0∫x=−m+8m+2>0y=5m+2>0

\Rightarrow ∫−m+8>0m+2>0∫m+2>0−m+8>0

\Rightarrow ∫m<8m>−2∫m>−2m<8

\Rightarrow -2<m<8 

\Rightarrow m ={ -1;0;1;2;3;4;5;6;7}

c, y = −m+8m+2−m+8m+2 = -1 + 10m+210m+2

hệ có nghiệm x.y nguyên dương \Leftrightarrow m+2 là ước nguyên dương của 5 

\Leftrightarrow m+2 = 1 ; 5

m+2 = 1 \Rightarrow m = -1

m+2 = 5 \Rightarrow m =3

20 tháng 1 2018

ở câu c sao y lại bằng như vậy

2 tháng 12 2021

Đặt S=x+y, P=x.y
Ta có:S=2a-1, x^2+y^2=S^2-2P=a^2+2a-3
\Rightarrow P=\frac{1}{2}[(2a-1)^2-(a^2+2a-3)]=\frac{1}{2}(3a^2-6a+4)
Trước hết tìm a để hệ có nghiệm.
Điều kiện để hệ có nghiệm:S^2-4P \geq 0 \Leftrightarrow (2a-1)^2-2(3a^2-6a+4)\geq 0
\Leftrightarrow -2a^2+8a-7 \geq 0 \leftrightarrow 2-\frac{\sqrt{2}}{2} \leq a \leq 2+\frac{\sqrt{2}}{2}      (1)
Tìm a để P=\frac{1}{2}(3a^2-6a+4) đạt giá trị nhỏ nhất trên đoạn
        [2-\frac{\sqrt{2}}{2} ;2+\frac{\sqrt{2}}{2}]
Ta có hoành độ đỉnh a_0=\frac{6}{2.3}=1Parabol có bề lõm quay lên do đó \min P=P(2-\frac{\sqrt{2}}{2} )$
Vậy với a=2-\frac{\sqrt{2}}{2}  thì xy đạt giá trị nhỏ nhất.

bài 1: Trong b​uổi lao động, 15 học sinh nam và nữ đã trồng được tất cả 180 cây. Biết rằng số cây các bạn nam trồng được số cây các bạn nữ trồng và mỗi bạn nam trồng nhiều hơn mỗi bạn nữ là 5 cây. Tính số bạn nam và nữbài 2: 1. Cho hệ phương trình \(\hept{\begin{cases}ax-y=2\\x+ay=3\end{cases}}\)a) tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đób) tìm a để hệ phương...
Đọc tiếp

bài 1: Trong b​uổi lao động, 15 học sinh nam và nữ đã trồng được tất cả 180 cây. Biết rằng số cây các bạn nam trồng được số cây các bạn nữ trồng và mỗi bạn nam trồng nhiều hơn mỗi bạn nữ là 5 cây. Tính số bạn nam và nữ

bài 2: 

1. Cho hệ phương trình \(\hept{\begin{cases}ax-y=2\\x+ay=3\end{cases}}\)

a) tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đó

b) tìm a để hệ phương trình vô nghiệm

2. cho hệ phương trình \(\hept{\begin{cases}ax-2y=a\\-2x+y=a+1\end{cases}}\)

a) tìm a để hệ phương trình có nghiệm duy nhất, khi đó tính x;y theo a

b) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn: x-y=1

c) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn x và y là các số nguyên

bài 3:

1.Chứng minh với mọi giá trị của m thì hệ phương trình \(\hept{\begin{cases}\left(m-1\right)x+y=2\\mx+y=m+1\end{cases}}\)(m là tham số) luôn có nghiệm duy nhất (x;y) thỏa mãn: \(2x+y\le3\)

2. Xác định giá trị của m để hệ phương trình \(\hept{\begin{cases}mx+5y=3\\x-3y=5\end{cases}}\)vô nghiệm

 

 

0
23 tháng 3 2020

a) Thay m vào phương trình, ta có:

\(\hept{\begin{cases}\sqrt{2}\times x+4y=10-\sqrt{2}\\x+\sqrt{2}\times y=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{2}x+4y=10-\sqrt{2}\\x=6-\sqrt{2}y\end{cases}}\)

Thay giá trị đã có của x vào phương trình

\(\sqrt{2}\times\left(6-\sqrt{2}y\right)+4y=10-\sqrt{2}\)

\(\Rightarrow y=5-\frac{7\sqrt{2}}{2}\)

Thay giá trị của y vào phương trình:

\(x=6-\sqrt{2}\times\left(5-\frac{7\sqrt{2}}{2}\right)\)

\(\Rightarrow x=13-5\sqrt{2}\)